Author(s): Pandurang J. Patole, Jameel Ahmed S. Mulla

Email(s): jameelahmed5@gmail.com

DOI: 10.52711/0975-4377.2025.00008   

Address: Pandurang J. Patole, Jameel Ahmed S. Mulla*
Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon - Karad, Maharashtra – 415111, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2025


ABSTRACT:
Parkinson's Disease (PD) is a progressive neurodegenerative disease caused by a lack of dopamine in the brain that manifests as both motor and non-motor symptoms. Because of the blood-brain barrier (BBB), short half-life, and irregular absorption, conventional oral therapies especially levodopa have limitations that can result in variable symptom control and negative side effects. This review explores the potential of liposomal in situ gels for intranasal drug delivery as an innovative solution for PD management. Liposomal systems are highly effective for encapsulating and stabilizing both hydrophilic and hydrophobic drugs, while in situ gels provide a unique sol-to-gel transition upon nasal administration, ensuring prolonged residence time, controlled release, and enhanced drug bioavailability. This combination enables drugs to bypass the BBB directly through the olfactory and trigeminal pathways, offering a non-invasive alternative with rapid onset, reduced dosing frequency, and minimized systemic side effects. Recent advances, formulation strategies, and challenges in optimizing these systems are discussed, providing insights into the therapeutic benefits of this novel approach. Future directions highlight the need for personalized, patient-centric solutions that improve therapeutic adherence and enhance the quality of life for PD patients.


Cite this article:
Pandurang J. Patole, Jameel Ahmed S. Mulla. Liposomal In Situ Gel: A Novel Approach for the Treatment of Parkinson's Disease via Intranasal Drug Delivery. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):53-2. doi: 10.52711/0975-4377.2025.00008

Cite(Electronic):
Pandurang J. Patole, Jameel Ahmed S. Mulla. Liposomal In Situ Gel: A Novel Approach for the Treatment of Parkinson's Disease via Intranasal Drug Delivery. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):53-2. doi: 10.52711/0975-4377.2025.00008   Available on: https://rjpdft.com/AbstractView.aspx?PID=2025-17-1-8


REFERENCES:
1.    Formulation and Evaluation of Acyclovir Loaded Transferosomal Gel for Transdermal Drug Delivery. J. Drug Delivery Ther. 2024; 14(9): 122-30.
2.    Shewale SS, Mulla JAS. Non-Ionic Surfactant Vesicle (Niosome): A Novel Drug Delivery System. Indian Journal of Novel Drug Delivery. 2022; 14(3): 129-137.
3.    Rane KA, Mulla JAS. Hyaluronic Acid-Coated Niosomes: A Promising Drug Delivery System with Potential Applications. Indian Journal of Novel Drug Delivery. 2024; 16(1): 11-19.
4.    Olanow CW, Stocchi F. Levodopa: A new look at an old friend. Mov Disord. 2018; Jul; 33(6): 859-866. doi: 10.1002/mds.27216. Epub 2017 Nov 27. PMID: 29178365.
5.    Shingate DM, Mulla JAS. Exploring Liposomes: Comprehensive Classification, Preparation Techniques, and Composition Insights. Indian Journal of Novel Drug Delivery. 2024; 16(2): 80-90.
6.    Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021; Jun 12; 397(10291): 2284-2303. doi: 10.1016/S0140-6736(21)00218-X. Epub 2021 Apr 10. PMID: 33848468.
7.    Chakorkar SS, Mulla JAS. A novel corticosteroid cubosomes–For ocular drug delivery. Indo Am J Pharm Res. 2020;10: 775-84.
8.    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers. 2017; Mar 23; 3: 17013. doi: 10.1038/nrdp.2017.13. PMID: 28332488.
9.    Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and Dysfunction of the Blood-Brain Barrier. Cell. 2015; Nov 19; 163(5): 1064-1078. doi: 10.1016/j.cell.2015.10.067. PMID: 26590417; PMCID: PMC4655822.
10.    Pooja M. Nikam, S.B. Gondkar, R.B. Saudagar. Brain Targeting Drug Delivery System: A Review. Asian J. Res. Pharm. Sci. 2015; 5(4): Oct.-Dec. 247-252.
11.    Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009; Sep 8; 379(1): 146-57. doi: 10.1016/j.ijpharm.2009.06.019. Epub 2009; Jun 23. PMID: 19555750.
12.    Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002; Dec 1; 7(23): 1184-9. doi: 10.1016/s1359-6446(02)02529-1. PMID: 12547019.
13.    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017; Mar 27; 9(2): 12. doi: 10.3390/pharmaceutics9020012. PMID: 28346375; PMCID: PMC5489929.
14.    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; Feb 22; 8(1): 102. doi: 10.1186/1556-276X-8-102. PMID: 23432972; PMCID: PMC3599573.
15.    Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012; May 15; 64(7): 614-28. doi: 10.1016/j.addr.2011.11.002. Epub 2011 Nov 15. PMID: 22119441.
16.    Ravi PR, Aditya N, Patil S, Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: improvement in bioavailability and brain localization. Drug Deliv. 2015; 22(7): 903-10. doi: 10.3109/10717544.2013.860501. Epub 2013 Nov 29. PMID: 24286183.
17.    Mabrouk M, Mulla JA, Kumar P, Chejara DR, Badhe RV, Choonara YE, du Toit LC, Pillay V. Intestinal targeting of ganciclovir release employing a novel HEC-PAA blended lyomatrix. AAPS PharmScitech. 2016; Oct; 17(5): 1120-30.
18.    Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm. 2019; Mar 25; 559: 360-372. doi: 10.1016/j.ijpharm.2019.01.056. Epub 2019 Feb 2. PMID: 30721725.
19.    Shirke SN, Mulla JAS. Intranasal nanoemulsion for brain targeting: A review. Indian Journal of Novel Drug Delivery. 2023; 15(1): 1-11.
20.    Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics. 2022; Mar 12; 14(3): 629. doi: 10.3390/pharmaceutics14030629. PMID: 35336004; PMCID: PMC8950509.
21.    Bansal A, Deval A. Nanocarriers for brain targeting: Recent advances. Drug Delivery and Translational Research. 2021; 11(5): 1251–1269.
22.    Landis MS, Ogden T. Nasal spray drug delivery for central nervous system therapies. Journal of Drug Delivery Science and Technology. 2019; 49: 11–19.
23.    Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. J Drug Target. 2015; 23(9): 775-88. doi: 10.3109/1061186X.2015.1020809. Epub 2015 Mar 11. PMID: 25758751.
24.    Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013; Feb; 3(1): 42-62. doi: 10.1007/s13346-012-0108-9. Epub 2012 Oct 18. PMID: 23316447; PMCID: PMC3539067.
25.    Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J Cell Physiol. 2017; Sep; 232(9): 2359-2372. doi: 10.1002/jcp.25518. Epub 2017 Apr 10. PMID: 27512962; PMCID: PMC5772764.
26.    Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerative disease: Focus on recent advances. Research J. Pharm. and Tech. 2020; 13(5): 2135-2143.
27.    Liji Jacob, Manju Salim S, Jilby Saju. Formulation and Evaluation of Transdermal Patches of Selegiline. Asian Journal of Pharmacy and Technology. 2022; 12(2): 96-0.
28.    LeWitt, P. A., Hauser, R. A., Pahwa, R., Isaacson, S. H., Fernandez, H. H., Lew, M., Saint-Hilaire, M., Pourcher, E., Lopez-Manzanares, L., Waters, C., Rudzínska, M., Sedkov, A., Batycky, R., Oh, C., & SPAN-PD Study Investigators (2019). Safety and efficacy of CVT-301 (levodopa inhalation powder) on motor function during off periods in patients with Parkinson's disease: a randomised, double-blind, placebo-controlled phase 3 trial. The Lancet. Neurology, 18(2), 145–154. https://doi.org/10.1016/S1474-4422(18)30405-8
29.    Isaacson SH, et al. Parkinsonism and Related Disorders. Parkinsonism and Related Disorders. 2020; 74: 1–9. doi: 10.1016/j.parkreldis.2020.04.022
30.    Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res. 2018; Jun 25; 15: 1-18. doi: 10.1016/j.jare.2018.06.005. PMID: 30581608; PMCID: PMC6300464.
31.    Ravi PR, Aditya N, Patil S, Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: improvement in bioavailability and brain localization. Drug Deliv. 2015; 22(7): 903-10. doi: 10.3109/10717544.2013.860501. Epub 2013 Nov 29. PMID: 24286183.
32.    Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target. 2010 Apr; 18(3):223-34. doi: 10.3109/10611860903386938. PMID: 20030503.
33.    I. Somasundaram, S. Sathesh Kumar. Preparation and evaluation of Pramipexole dihydrochloride loaded chitosan nanoparticles for brain-targeting. Research J. Pharm. and Tech. 2017; 10(1): 245-251.
34.    Gelperina S, Kostoglou-Athanassiou I. Challenges in nose-to-brain drug delivery systems for neurodegenerative diseases. Journal of Drug Targeting. 2021; 29(5): 567–579.
35.    Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release. 2012; Jun 10; 160(2): 117-34. doi: 10.1016/j.jconrel.2012.03.020. Epub 2012 Mar 29. PMID: 22484195.
36.    Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286.
37.    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; Jan; 65(1): 36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1. PMID: 23036225.
38.    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017; Mar 27; 9(2): 12. doi: 10.3390/pharmaceutics9020012. PMID: 28346375; PMCID: PMC5489929.
39.    Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002; Dec 1; 7(23): 1184-9. doi: 10.1016/s1359-6446(02)02529-1. PMID: 12547019.
40.    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; Jan; 65(1): 36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1. PMID: 23036225.
41.    Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. Int J Mol Sci. 2023; Jan 31; 24(3): 2643. doi: 10.3390/ijms24032643. PMID: 36768966; PMCID: PMC9916501.
42.    Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022; Feb 17; 27(4): 1372. doi: 10.3390/molecules27041372. PMID: 35209162; PMCID: PMC8879473.
43.    Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011; Mar 18; 63(3): 136-51. doi: 10.1016/j.addr.2010.04.009. Epub 2010 May 2. PMID: 20441782.
44.    Illum L. Nasal drug delivery - recent developments and future prospects. J Control Release. 2012; Jul 20; 161(2): 254-63. doi: 10.1016/j.jconrel.2012.01.024. Epub 2012 Jan 24. PMID: 22300620.
45.    Kalaiselvi S, Manimaran V, Damodharan N. Nanoparticle as a powerful tool to penetrate the Blood-brain barrier in the treatment of Neurodegenerative disease: Focus on recent advances. Research J. Pharm. and Tech. 2020; 13(5): 2135-2143.
46.    Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007; Oct; 4(4): 297-305. doi: 10.2174/156720107782151269. PMID: 17979650.
47.    Katare DP, Modi S, Chaurasia M. Lipid-based nanocarriers in brain-targeted drug delivery. Journal of Drug Targeting. 2019; 27(5-6): 493–505.
48.    Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm. 2019 Mar 25; 559: 360-372. doi: 10.1016/j.ijpharm.2019.01.056. Epub 2019 Feb 2. PMID: 30721725.
49.    Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021; May 15; 601: 120571. doi: 10.1016/j.ijpharm.2021.120571. Epub 2021 Apr 2. PMID: 33812967.
50.    La-Beck NM, Gabizon AA. Nanoparticle Interactions with the Immune System: Clinical Implications for Liposome-Based Cancer Chemotherapy. Front Immunol. 2017; Apr 6; 8: 416. doi: 10.3389/fimmu.2017.00416. PMID: 28428790; PMCID: PMC5382151.
51.    Javadzadeh Y, Zare K. In situ gel systems for nasal delivery: A review. European Journal of Pharmaceutical Sciences. 2020; 144: 105215.
52.    Wang X, Liu G, Ma J, Guo S, Gao L, Jia Y, Li X, Zhang Q. In situ gel-forming system: an attractive alternative for nasal drug delivery. Crit Rev Ther Drug Carrier Syst. 2013;30(5):411-34. doi: 10.1615/critrevtherdrugcarriersyst.2013007362. PMID: 24099327.
53.    Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL. Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res A. 2010; Jun 1; 93(3): 852-63. doi: 10.1002/jbm.a.32574. PMID: 19658177.
54.    Hiremath SP, Dasankoppa FS, Nadaf A, Jamakandi VG, Mulla JS, Sholapur HN. Formulation and evaluation of a novel in situ gum based ophthalmic drug delivery system of linezolid. Scientia Pharmaceutica. 2008;76(3): 515-532.
55.    Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021; Sep 25; 607: 120994. doi: 10.1016/j.ijpharm.2021.120994. Epub 2021 Aug 12. PMID: 34390810.
56.    Muhammad U. Ghori, Mohammed H. Mahdi, Alan M. Smith, Barbara R. Conway. Nasal Drug Delivery Systems: An Overview. American Journal of Pharmacological Sciences. Vol. 3, No. 5, 2015, pp 110-119. https://pubs.sciepub.com/ajps/3/5/2
57.    Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev. 2024; Apr; 207: 115196. doi: 10.1016/j.addr.2024.115196. Epub 2024 Feb 7. PMID: 38336090.
58.    Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020; Jun 6; 24: 12. doi: 10.1186/s40824-020-00190-7. PMID: 32537239; PMCID: PMC7285724.
59.    Garg A, Agrawal R, Singh Chauhan C, Deshmukh R. In-situ gel: A smart carrier for drug delivery. Int J Pharm. 2024; Mar 5; 652: 123819. doi: 10.1016/j.ijpharm.2024.123819. Epub 2024 Jan 18. PMID: 38242256.
60.    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005; Feb; 4(2): 145-60. doi: 10.1038/nrd1632. PMID: 15688077.
61.    Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021; Jan 5; 192: 113642. doi: 10.1016/j.jpba.2020.113642. Epub 2020 Sep 19. PMID: 33011580.
62.    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; Jan; 65(1): 36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1. PMID: 23036225.
63.    Basak SC, Chatterjee A. Advances in in situ gel-forming drug delivery systems for nasal administration: A review. Drug Development and Industrial Pharmacy. 2018; 44(5): 764–772. doi: 10.1080/03639045.2017.1416146
64.    Ravi PR, Aditya N, Patil S, Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: Improvement in bioavailability and brain localization. Drug Delivery. 2017; 22(7): 903–910. doi: 10.3109/10717544.2014.934972
65.    aur R, Tiwari S. Formulation and evaluation of in situ gel for intranasal delivery of drugs: A review. Journal of Drug Delivery Science and Technology. 2018; 44: 93–104. doi: 10.1016/j.jddst.2017.10.014
66.    Javadzadeh Y, Zare K. In situ gel systems for nasal delivery: A review. European Journal of Pharmaceutical Sciences. 2020; 144: 105215. doi: 10.1016/j.ejps.2019.105215
67.    Rao M, Agrawal DK, Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Development and Industrial Pharmacy. 2017; 43(2): 142–150.
68.    Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews. 2013; 65(1): 36–48.
69.    Allen TM, Cullis PR. Liposomal drug delivery systems: Current applications and future prospects. Nature Reviews Drug Discovery. 2019; 18(1): 25–36.
70.    Wu Y, Lim LY. Formulation optimization of novel proniosomes for effective transdermal delivery of piroxicam. International Journal of Pharmaceutics. 2016; 500(1-2): 117–126.
71.    Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv Transl Res. 2021; Apr; 11(2): 471-497. doi: 10.1007/s13346-021-00908-7. Epub 2021 Feb 2. PMID: 33528830; PMCID: PMC7852471.
72.    Wu H, Zhou Y, Wang Y, Tong L, Wang F, Song S, Xu L, Liu B, Yan H, Sun Z. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Front Pharmacol. 2021; Jul 12; 12: 717192. doi: 10.3389/fphar.2021.717192. PMID: 34322030; PMCID: PMC8311521.
73.    Gayatri D Patil, Aditya R Nikam, Paresh A. Patil, Aakash D. Sonar. Nose to Brain Drug Delivery System. Research Journal of Pharmaceutical Dosage Forms and Technology. 2021; 13(4): 335-0.
74.    Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013 Feb;3(1):42-62. doi: 10.1007/s13346-012-0108-9. Epub 2012 Oct 18. PMID: 23316447; PMCID: PMC3539067.
75.    Manoj K. Baladaniya, Ankit P. Karkar, Nirav V. Patel. Review on Drug Delivery to the Central Nervous System: Novel Approaches. Res. J. Pharm. Dosage Form. and Tech. 2014; 6(4): Oct.- Dec.  253-266.
76.    R. Nagaraju, U. Rajeswari, G. Ravi, P. Subhash Chandra Bose, Damineni Saritha. Development and in vitro Characterization of Intranasal Microemulsions of Sumatriptan Succinate for brain Targeting. Research Journal of Pharmacy and Technology. 2021; 14(4): 2062-8.
77.    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; Feb 22; 8(1): 102. doi: 10.1186/1556-276X-8-102. PMID: 23432972; PMCID: PMC3599573.
78.    Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006; 1(3): 297-315. PMID: 17717971; PMCID: PMC2426795.
79.    Anupam Sarma, Malay K. Das, Tapash Chakraborty, Sanjoy Das. Nanostructured lipid carriers (NLCs)-based intranasal Drug Delivery System of Tenofovir disoproxil fumerate (TDF) for brain targeting. Research J. Pharm. and Tech. 2020; 13(11): 5411-5424.
80.    Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horiz. 2021; Feb 1; 6(2): 78-94. doi: 10.1039/d0nh00605j. Epub 2021 Jan 5. PMID: 33400747.
81.    Ravi PR, Aditya N, Patil S, Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: improvement in bioavailability and brain localization. Drug Deliv. 2015; 22(7): 903-10. doi: 10.3109/10717544.2013.860501. Epub 2013 Nov 29. PMID: 24286183.
82.    Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol. 2015; Dec 1; 6: 286. doi: 10.3389/fphar.2015.00286. PMID: 26648870; PMCID: PMC4664963.
83.    Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency. Advanced Drug Delivery Reviews. 1999; 40(1-2): 75–87.
84.    Khan S, et al. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency. Journal of Drug Targeting. 2018; 18(3): 223–234.
85.    Lungare S, Bowen J, Badhan R. Development and evaluation of a novel intranasal spray for the delivery of amantadine. Journal of Pharmaceutical Sciences. 2016; 105(5): 1209–1220.
86.    Desai D, Rane S. Role of in situ gel systems in nasal drug delivery: A review. Pharmaceutical Research. 2015; 32(1): 1–21.
87.    Kaur S, Kaur G. Current trends in nasal drug delivery system. Asian Journal of Pharmaceutical Sciences. 2018; 13(6): 492–508.
88.    Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug Deliv Transl Res. 2013; Feb; 3(1): 42-62. doi: 10.1007/s13346-012-0108-9. Epub 2012 Oct 18. PMID: 23316447; PMCID: PMC3539067.
89.    Ravi PR, Aditya N, Patil S, Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: Improvement in bioavailability and brain localization. Drug Delivery. 2015; 22(7): 903–910.
90.    Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021; Sep 25; 607: 120994. doi: 10.1016/j.ijpharm.2021.120994. Epub 2021 Aug 12. PMID: 34390810.
91.    Sujit Kumar, I. Somasundaram. Development and Evaluation of Pramipexole Dihydrochloride and Piperine Loaded Chitosan Nanoparticles for Improved Treatment of Parkinson’s Disease. Research J. Pharm. and Tech. 2019; 12(12): 5822-5826
92.    Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012; May 15; 64(7): 614-28. doi: 10.1016/j.addr.2011.11.002. Epub 2011 Nov 15. PMID: 22119441.
93.    Culver HR, Clegg JR, Peppas NA. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. Acc Chem Res. 2017; Feb 21; 50(2): 170-178. doi: 10.1021/acs.accounts.6b00533. Epub 2017 Feb 7. Erratum in: Acc Chem Res. 2018; Oct 16; 51(10): 2600. doi: 10.1021/acs.accounts.8b00411. PMID: 28170227; PMCID: PMC6130197.
94.    Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm. 2019; Jun 30; 565: 258-268. doi: 10.1016/j.ijpharm.2019.05.032. Epub 2019 May 13. PMID: 31095983.
95.    Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target. 2010; Apr; 18(3): 223-34. doi: 10.3109/10611860903386938. PMID: 20030503.
96.    Daneshmandi S, Shamsipur M. Hybrid nanocarriers for drug delivery. Drug Development and Industrial Pharmacy. 2022; 48(3): 465–481.
97.    Bijo Mathew, Githa Elizebeth Mathew, Shafeer V.P., Mohammed Musthafa C., Femina P. A Green Route Approach of α, β-Unsaturated Ketone Having a Benzimidazole Tail and Their Virtual Screening on the Molecular Descriptors for Predicting the CNS-Druglikeness. Asian J. Research Chem. 2012; 5(1): January 65-68.
98.    Mishima T, Fujioka S, Morishita T, Inoue T, Tsuboi Y. Personalized Medicine in Parkinson's Disease: New Options for Advanced Treatments. J Pers Med. 2021; Jul 10; 11(7): 650. doi: 10.3390/jpm11070650. PMID: 34357117; PMCID: PMC8303729.
99.    Bharat Bava, Kruti Sharma, Vikas Yadav. Intranasal Drug Delivery System: A Review. Research Journal of Science and Technology. 2024; 16(1): 51-8.
100.    Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, Vader P. Extracellular vesicles as drug delivery systems: Why and how? Adv Drug Deliv Rev. 2020; 159: 332-343. doi: 10.1016/j.addr.2020.04.004. Epub 2020 Apr 16.
101.    Sarika S. Lokhande. A Review on Intranasal Drug Delivery System with Recent Advancement. Research J. Topical and Cosmetic Sci. 9(1): Jan.-June 2018 page 12-18.
102.    Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioact Mater. 2021; Dec 17; 14: 169-181. doi: 10.1016/j.bioactmat.2021.12.006. PMID: 35310361.
103.    Sunena, Sumit Kumar, Sulekha, Deepali Tomar, Dinesh Kumar, Vimal Kishore. Applications of Polymeric Nanoparticle in Nose to Brain Drug Delivery. Research Journal of Pharmacy and Technology. 2023; 16(12): 6087-4.
104.    Zhao N, Yang Y, Zhang L, Zhang Q, Balbuena L, Ungvari GS, Zang YF, Xiang YT. Quality of life in Parkinson's disease: A systematic review and meta-analysis of comparative studies. CNS Neurosci Ther. 2021; Mar; 27(3): 270-279. doi: 10.1111/cns.13549. Epub 2020 Dec 28.
105.    VP Kahale, PR Upadhay, AJ Mhaiskar, PS Shelat, DR Mundhada. To Access the Efficacy of Rutin on 6-Hydroxydopamine induced Animal Model of Memory Impairment in Parkinson’s Disease. Research J. Pharmacology and Pharmacodynamics.2013; 5(6): 2013; 331-336.

Recomonded Articles:

Author(s): Swapnil T. Deshpande, P. S. Vishwe, Rohit D. Shah, Swati S. Korabu, Bhakti R. Chorghe, DG Baheti

DOI:         Access: Open Access Read More

Author(s): Dipti G. Phadtare, Amol R. Pawar, R.B. Saudagar, Govind K.Patil

DOI: 10.5958/0975-4377.2017.00002.7         Access: Open Access Read More

Author(s): Kritika Kanoujia, Chandraprabha Dewangan, Ayushi Masih, Dipti Sinha, Divya Oraon, Manisha Jaiswal, Monika Sahu, Ranjeeta Kumari, Sapna Pradhan, Ravi Suman, Rajkishan Dewangan, Roman Banjare, Pradeep Paikra, Mukesh Rawtiya, Mukta Agrawal, Ajazuddin, D. K. Tripathi, Amit Alexander

DOI: 10.5958/0975-4377.2018.00015.0         Access: Open Access Read More

Author(s): Chirag A. Patel, Priyal R. Patel, Dhrubo Jyoti Sen,Jayvadan K. Patel

DOI:         Access: Open Access Read More

Author(s): Patil Namrata D., Gondkar S.B., Saudagar R.B.

DOI: 10.5958/0975-4377.2016.00033.1         Access: Open Access Read More

Author(s): Varsha R. Sandhan, S.B. Gondkar, R. B. Saudagar

DOI:         Access: Open Access Read More

Author(s): Ashok Thulluru, K. Saravanakumar, Ch. S. Phani Kumar, Nawaz Mahammed, D. Sreeja, G. Bhuvanesh, N. Vamsi Chowdary, Nayeema Khowser Shaik

DOI: 10.5958/0975-4377.2019.00049.1         Access: Open Access Read More

Author(s): Hardik B. Rana, Kajol Patel, Mansi Dholakia, Vaishali T. Thakkar, Mukesh C. Gohel, Tejal R. Gandhi

DOI: 10.5958/0975-4377.2017.00006.4         Access: Open Access Read More

Author(s): Suresh A. Marnoor

DOI:         Access: Open Access Read More

Author(s): Gayatri D. Patil, Kaveri P. Tambe, Sangita P. Shirsat, Paresh A. Patil

DOI: 10.5958/0975-4377.2021.00015.X         Access: Open Access Read More

Author(s): K Sonu Sharma, Rashmi Sharma, G Vidya Sagar

DOI:         Access: Open Access Read More

Author(s): Masheer Ahmed Khan

DOI:         Access: Open Access Read More

Author(s): Shoaib Ahmad

DOI: 10.5958/0975-4377.2016.00041.0         Access: Open Access Read More

Author(s): Samadhan K. Deore, Rajendra K Surawase, Avish Maru

DOI: 10.5958/0975-4377.2019.00045.4         Access: Open Access Read More

Author(s): Abhijit Chormale, Dharmendra Mundhada, Rajesh Mujoriya

DOI: 10.5958/0975-4377.2015.00026.9         Access: Open Access Read More

Author(s): P. Lekshmi, K. Pramod, K.C. Ajithkumar

DOI: 10.5958/0975-4377.2016.00007.0         Access: Open Access Read More

Research Journal of Pharmaceutical Dosage Forms and Technology (RJPDFT) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. ...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0975-4377 


Recent Articles




Tags