Author(s):
Umesh A. Bahiram, Madhuri D. Davange, Sunil K. Mahajan
Email(s):
umeshbahiram36@gmail.com , davangemadhuri@gmail.com , divinecop15@gmail.com
DOI:
10.52711/0975-4377.2025.00017
Address:
Umesh A. Bahiram*, Madhuri D. Davange, Sunil K. Mahajan
Department of Pharmaceutics, Divine College of Pharmacy, Satana, India.
Savitribai Phule Pune University, Pune, 423301, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 2,
Year - 2025
ABSTRACT:
This review examines the potential of nanoparticles to transform medication delivery systems, highlighting their advantages in targeted therapy, enhanced bioavailability, and personalized treatment options. Despite their promise, several challenges hinder their effective implementation in clinical settings. Key issues include concerns about toxicity and biocompatibility, as well as the stability of nanoparticle formulations over time. The difficulty in achieving precise targeting while avoiding non-specific binding is a significant barrier. Additionally, the regulatory landscape for nanomedicine is complex and continuously evolving, leading to uncertainties in safety assessments and approval processes. Manufacturing challenges related to scalability and consistencies further complicate the transition to clinical applications. In order to overcome these obstacles and successfully incorporate nanoparticles into conventional medicine while also enhancing patient outcomes, this review emphasizes the significance of further research and development.
Cite this article:
Umesh A. Bahiram, Madhuri D. Davange, Sunil K. Mahajan. Future Possibilities and Challenges in Medication Delivery using Nanoparticles. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(2):115-2. doi: 10.52711/0975-4377.2025.00017
Cite(Electronic):
Umesh A. Bahiram, Madhuri D. Davange, Sunil K. Mahajan. Future Possibilities and Challenges in Medication Delivery using Nanoparticles. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(2):115-2. doi: 10.52711/0975-4377.2025.00017 Available on: https://rjpdft.com/AbstractView.aspx?PID=2025-17-2-5
8. REFERENCES:
1. Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res. 2000; 33:94-101.
2. Bhadra D, Bhadra S, Jain P, Jain NK. Penology: a review of PEG-ylated systems. Pharmazie. 2002; 57:5-29.
3. Kommareddy S, Tiwari SB, Amiji MM. Long-circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat. 2005; 4:615-25.
4. Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res. 2005; 22:1-10.
5. Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release. 2002; 78:15-24.
6. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003; 86:33-48.
7. Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 2001; 40:4128-58.
8. Duncan R, Gasco MR. Nanomedicine: a new approach to drug delivery. Nat Rev Drug Discov. 2011; 10(7):491-507.
9. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2:751.
10. Rotello VM. Sniffing out cancer using “chemical nose” sensors. Cell Cycle. 2009; 8(22):3615-6.
11. Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016; 3(1):1.
12. Zhang L, GU FX. Nanoparticles for drug delivery: design, development, and clinical applications. Nat Rev Drug Discov. 2008; 7(7): 553-70.
13. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; 65(1): 36-48.
14. Arruebo M, Fernández-Pacheco R, Ibarra MR, SantamarĂa J. Magnetic nanoparticles for drug delivery. Nano Today. 2007; 2: 22-32.
15. Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev. 2013; 65:21-23.
16. Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carr Syst. 1987; 3: 233-261.
17. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012; 64: 1020-1037.
18. Bhowmik D, Chandira RM, Patra J, et al. Nanoparticles: a review on their properties and applications. J Pharm Sci Res. 2012; 4(3): 2020-30.
19. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013; 65(1): 36-48.
20. Liu Z, Robinson JT, Sun X, Dai H. Carbon nanotubes for biomedical applications. Mater Today. 2010; 13(6): 24-30.
21. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties. Nanoscale. 2008; 1(1): 12-7.
22. Vallet-RegĂ M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl. 2007; 46(40):7548-58.
23. Bai MY, et al. Preparation of drug-loaded nanoparticles via single and double emulsions. J Control Release. 2018; 276: 157-70.
24. Wang Y, et al. Double emulsion for the preparation of nanoparticles: An overview. Adv Drug Deliv Rev. 2020; 154-155: 44-58.
25. Patel A, et al. Fabrication of nanoparticles using solvent evaporation technique: A review. Nano Biomed Eng. 2020; 12(1): 12-20.
26. Khan Y, et al. Solvent evaporation method for preparation of polymeric nanoparticles. Asian J Pharm Clin Res. 2019; 12(3):1-5.
27. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm. 2001; 218: 75-80.
28. Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-[beta] cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm. 2001; 218: 113-124.
29. Puglisi G, Fresta M, Giammona G, Ventura CA. Influence of the preparation conditions on poly (ethylcyanoacrylate) nanocapsule formation. Int J Pharm. 1995; 125: 283-287.
30. Bhattacharjee S. DLS and zeta potential – techniques for characterizing nanoparticles. J Nanoparticle Res. 2016; 18(1): 1-12.
31. Bai MY, et al. Salting out technique for the preparation of nanoparticles. Nano Biomed Eng. 2021; 13(1): 1-8.
32. Li Y, et al. Emulsification-diffusion method for the preparation of polymeric nanoparticles: A review. Curr Pharm Des. 2020; 26(11): 1325-1335.
33. Duarte A, et al. A comparative study of emulsification diffusion and solvent evaporation methods for nanoparticle preparation. J Biomed Nanotechnol. 2019; 15(6): 1240-1250.
34. Sahu A, et al. Targeted drug delivery using nanoparticles: A review. J Drug Deliv Sci Technol. 2021; 61: 102287.
35. Zhang Y, et al. Combination therapy using nanoparticles for enhanced cancer treatment. Adv Drug Deliv Rev. 2020; 156:71-86.
36. Mainardes RM, Diedrich C. The potential role of nanomedicine on COVID-19 therapeutics. Ther Deliv. 2020; 11: 411-414.
37. Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020; 10: 7921-7924.
38. Zhou Q, Dong C, Fan W, Jiang H, Xiang J, Qiu N, Piao Y, Xie T, Luo Y, Li Z, et al. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials. 2020; 240: 119902.
39. McNeil SE. Nanoparticle therapeutics: clinical challenges and opportunities. Nat Rev Drug Discov. 2009; 8(3): 203-14.
40. Pardridge WM. Drug transport across the blood-brain barrier. Nat Rev Drug Discov. 2012; 11(2): 112-24.
41. McNeil SE. Nanoparticle therapeutics: clinical challenges and opportunities. Nat Rev Drug Discov. 2009; 8(3): 203-14.
42. Ganti AK, et al. Tumor heterogeneity: implications for personalized therapy. Clin Lung Cancer. 2016; 17(2): 113-21.
43. Jain RK. Antiangiogenesis strategies revisited: from the bench to the clinic. Lancet Oncol. 2001; 2(7): 407-15.
44. Allen TM, Cullis PR. Liposome nanocarriers for cancer therapy. Nat Rev Cancer. 2013; 14(3): 203-14.
45. Zhang L, et al. Stability and degradation of nanoparticle-based drug delivery systems. Mol Pharm. 2016; 13(5): 1615-30.
46. Daima HK, et al. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale. 2014; 6(2): 758-65.
47. Daima HK, et al. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One. 2013; 8(10): 1-14.
48. Wang Y, et al. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J Mater Chem B. 2015; 3(36): 7153-72.
49. Nel AE, et al. Toxic potential of materials at the nanoscale. Science. 2006; 311(5761): 622-7.
50. Zhang L, et al. Stability and degradation of nanoparticle-based drug delivery systems. Mol Pharm. 2016; 13(5): 1615-30.
51. Ghosh P, et al. Targeted drug delivery: the next generation of nanomedicine. Nat Rev Drug Discov. 2008; 7(12): 953-63.
52. Wang AZ, et al. Targeted delivery of cancer therapeutics using nanoparticles. Nat Rev Clin Oncol. 2016; 13(8): 498-510.
53. Duncan R, Gaspar R. Nanomedicine: A new era for medicine. Nat Rev Drug Discov. 2011; 10(7): 459-463.
54. Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2(12): 751-760.
55. Agarwal R, Kakkar S, Saha R, et al. Nanoparticles: A novel approach to enhance drug delivery. J Drug Target. 2018; 26(3): 234-246.
56. Duncan R, Gaspar R. Nanomedicine: A new era for medicine. Nat Rev Drug Discov. 2011; 10(7): 459-463.
57. Manshian B, et al. Nanoparticles and the immune system: An overview of the future. Nanomedicine (Lond). 2016; 11(12): 1581-1600.