Author(s): Sarika Gupta, Victor Alert, Arti Gupta

Email(s): sarikagupta7017@gmail.com

DOI: 10.52711/0975-4377.2025.00011   

Address: Sarika Gupta1*, Victor Alert1, Arti Gupta2
1Department of Pharmacy, Agra Public College of Higher Education and Research Centre, Agra – 282007, India.
2Shree Bankey Bihari Dental College and Research Centre, Ghaziabad – 201302, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 1,     Year - 2025


ABSTRACT:
Vaccines have been a fundamental part of public health for a long time, offering essential protection against infectious diseases. Recent advancements in vaccine technology are now expanding the possibilities of disease prevention and treatment. This article outlines key developments in the field, highlighting novel vaccine technologies, targeted disease treatments, and challenges facing next-generation vaccine efforts. Vaccine development is progressing for traditionally challenging diseases, including HIV/AIDS, various viral infections (e.g., cytomegalovirus, dengue, Ebola), cancer, and other chronic conditions. Efforts also focus on bacterial (e.g., C. difficile, chlamydia, E. coli) and parasitic diseases (e.g., malaria, hookworm, leishmaniasis). Combination vaccines, which simplify immunization schedules, are under development to increase vaccine uptake. The COVID-19 pandemic catalyzed unprecedented collaboration and speed in vaccine development, with the first COVID-19 vaccines authorized within six months. Researchers are now focused on universal COVID-19 vaccines to address multiple variants. Emerging technologies such as nanoparticle-based vaccines and mucosal vaccines (e.g., inhalation or oral delivery) show promise for stronger immunity. Precision vaccine development, drawing on cues from natural immunity, may enhance efficacy and safety. Innovations such as recombinant DNA, viral vector vaccines, non-replicating vector vaccines, RNA vaccines, and DNA plasmid technology are opening new pathways in vaccine development. These technologies aim to create safe and effective vaccines, even for individuals with compromised immune systems. The future of vaccines involves leveraging new technologies and precision approaches to improve safety and efficacy, addressing both current and emerging diseases. Continued research and ethical prioritization in vaccine development will be crucial for enhancing global health outcomes.


Cite this article:
Sarika Gupta, Victor Alert, Arti Gupta. Redefining Immunization: Recent Advances and Innovations in Vaccine Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):73-1. doi: 10.52711/0975-4377.2025.00011

Cite(Electronic):
Sarika Gupta, Victor Alert, Arti Gupta. Redefining Immunization: Recent Advances and Innovations in Vaccine Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):73-1. doi: 10.52711/0975-4377.2025.00011   Available on: https://rjpdft.com/AbstractView.aspx?PID=2025-17-1-11


REFERENCES:
1.    Plotkin SA. Vaccines: past, present and future. Nature Medicine [Internet]. 2005; Apr 1; 11(S4): S5–11. Available from: https://pubmed.ncbi.nlm.nih.gov/15812490/
2.    Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nature Reviews Immunology [Internet]. 2020; Dec 22; 21(2): 83–100. Available from: https://www.nature.com/articles/s41577-020-00479-7
3.    Introduction. vaccines [Internet]. PubMed. 2014. Available from: https://pubmed.ncbi.nlm.nih.gov/25647837/
4.    Lieu TA, Ray GT, Klein NP, Chung C, Kulldorff M. Geographic clusters in underimmunization and vaccine refusal. PEDIATRICS [Internet]. 2015; Jan 20; 135(2): 280–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25601971/
5.    Canouï E, Launay O. Histoire et principes de la vaccination. Revue Des Maladies Respiratoires [Internet]. 2018; Dec 20; 36(1): 74–81. Available from: https://pubmed.ncbi.nlm.nih.gov/30579659/
6.    Horzinek MC, Thiry E. Vaccines and Vaccination: the principles and the polemics. Journal of Feline Medicine and Surgery [Internet]. 2009; May 28; 11(7): 530–7. Available from: https://pubmed.ncbi.nlm.nih.gov/19481032/
7.    Saman S, Chauhan I, Srivastava N. Vaccines: an important tool for infectious disease. Recent Advances in Anti-Infective Drug Discovery [Internet]. 2022; Nov 16; 18(2): 88–109. Available from: https://pubmed.ncbi.nlm.nih.gov/36380412/
8.    Xie J, He Y. Ontology-Based Vaccine Adverse Event Representation and Analysis. Advances in Experimental Medicine and Biology [Internet]. 2017 Jan 1;89–103. Available from: https://pubmed.ncbi.nlm.nih.gov/29058218/
9.    Wagner R, Hildt E. Zusammensetzung und Wirkmechanismen von Adjuvanzien in zugelassenen viralen Impfstoffen. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz [Internet]. 2019 Mar 4;62(4):462–71. Available from: https://pubmed.ncbi.nlm.nih.gov/30830257/
10.    Wada H, Shimizu A, Osada T, Tanaka Y, Fukaya S, Sasaki E. Correction: Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design. PLoS ONE [Internet]. 2018 Oct 4;13(10):e0205567. Available from: https://pubmed.ncbi.nlm.nih.gov/30286206/
11.    Boumart Z, Daouam S, Bamouh Z, Jazouli M, Tadlaoui KO, Dungu B, et al. Safety and immunogenicity of a live attenuated Rift Valley Fever recombinant arMP-12ΔNSm21/384 vaccine candidate for sheep, goats and calves. Vaccine [Internet]. 2019 Feb 14;37(12):1642–50. Available from: https://pubmed.ncbi.nlm.nih.gov/30773401/
12.    Falkard B, Charles RC, Matias WR, Mayo-Smith LM, Jerome JG, Offord ES, et al. Bivalent oral cholera vaccination induces a memory B cell response to the V. cholerae O1-polysaccharide antigen in Haitian adults. PLoS Neglected Tropical Diseases [Internet]. 2019 Jan 31;13(1):e0007057. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6372202/
13.    Konde P, Game R, Urhe M, Shinde A. Immunity management post cancer therapy. Asian Journal of Pharmaceutical Research [Internet]. 2022 Mar 5;24–8. Available from: https://asianjpr.com/AbstractView.aspx?PID=2022-12-1-5
14.    Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nature Immunology [Internet]. 2011 May 18;12(6):509–17. Available from: https://pubmed.ncbi.nlm.nih.gov/21739679/
15.    https://learning.eupai.ei/course/view.phd?id=9#section-5
16.    Kozak M, Hu J. The integrated consideration of vaccine platforms, adjuvants, and delivery routes for successful vaccine development. Vaccines [Internet]. 2023 Mar 17;11(3):695. Available from: https://pubmed.ncbi.nlm.nih.gov/36992279/
17.    Advantages and disadvantages of various vaccine platforms. [Internet]. ResearchGate. Available from: https://www.researchgate.net/figure/Advantages-and-disadvantages-of-various-vaccine-platforms_tbl4_350082129
18.    Haider R. Vaccine through Centuries. Major Cornerstone of Global Health. Asian Journal of Pharmacy and Technology [Internet]. 2023 Mar 22;65–9. Available from: https://ajptonline.com/AbstractView.aspx?PID=2023-13-1-13
19.    Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, et al. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. Progress in Biophysics and Molecular Biology [Internet]. 2023; Feb 20; 178: 32–49. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9938630/
20.    Kim H, Han JY, So J, Seo Y. An investigation of cognitive processing of fear appeal messages promoting HPV vaccination: predictors and outcomes of magnitude and valence of cognitive responses. Journal of Health Communication [Internet]. 2020 Nov 1;25(11):885–94. Available from: https://pubmed.ncbi.nlm.nih.gov/33245028/
21.    https://www.indiascienceandtechnology.gov.in/covid-19-vaccine/vaccine-introduction
22.    https://www.indiascienceandtechnology.gov.in/covid-19-vaccine/types-vaccine
23.    https://courses.lumenlearning.com/suny-microbiology/chapter/vaccines/
24.    Advantages and disadvantages of using live vaccines risks and control measures [Internet]. PubMed. 1996. Available from: https://pubmed.ncbi.nlm.nih.gov/8996894/
25.    Business Bliss Consultants FZE. Advantages and Disadvantages of Vaccinations [Internet]. November 2018. [Accessed 18 May 2024].
26.    Khan KH. DNA vaccines: roles against diseases. GERMS [Internet]. 2013 Mar 1;3(1):26–35. Available from: https://pubmed.ncbi.nlm.nih.gov/24432284/
27.    Gupta T. Immunotherapy for Cancer: Strategies of Immunomodulation Therapy in Combination with Conventional Approaches. Eurasian Journal of Medicine and Oncology [Internet]. 2022; Jan 1; Available from: https://www.researchgate.net/publication/359295867_Immunotherapy_for_Cancer_Strategies_of_Immunomodulation_Therapy_in_Combination_with_Conventional_Approaches
28.    Gadhave DU, Gaikwad PS, Pimpodkar NV, Udugade SB. DNA vaccines: A hope full ray in Immunology. Asian Journal of Research in Pharmaceutical Sciences [Internet]. 2015; Jan 1; 5(2): 126. Available from: https://ajpsonline.com/HTMLPaper.aspx?Journal=Asian+Journal+of+Research+in+Pharmaceutical+Sciences%3BPID%3D2015-5-2-10
29.    Ada G. The importance of vaccination. Frontiers in Bioscience [Internet]. 2006; Nov 28; 12(1): 1278. Available from: https://pubmed.ncbi.nlm.nih.gov/17127380/
30.    Ma C, Li Y, Wang L, Zhao G, Tao X, Tseng CTK, et al. Intranasal vaccination with recombinant receptor-binding domain of MERS-CoV spike protein induces much stronger local mucosal immune responses than subcutaneous immunization: Implication for designing novel mucosal MERS vaccines. Vaccine [Internet]. 2014; Feb 18; 32(18): 2100–8. Available from: https://www.sciencedirect.com/science/article/pii/S0264410X14001765
31.    Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nature Reviews Immunology [Internet]. 2018; Jun 19; 18(9): 545–58. Available from: https://pubmed.ncbi.nlm.nih.gov/29921905/
32.    Visweswaran V, Binoy A, Sreenivas A, Abhinand B, Vijayan M. Vaccines-Pillars of Preventive Health. Research Journal of Pharmacy and Technology [Internet]. 2017; Jan 1; 10(9): 3205. Available from: https://rjptonline.org/HTMLPaper.aspx?Journal=Research%20Journal%20of%20Pharmacy%20and%20Technology;PID=2017-10-9-69
33.    Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Frontiers in Immunology [Internet]. 2022; Dec 14; 13. Available from: https://pubmed.ncbi.nlm.nih.gov/36591226/
34.    What is immunotherapy? | Immunotherapy for cancer [Internet]. American Cancer Society. Available from: https://www.cancer.org/cancer/managing-cancer/treatment-types/immunotherapy.html
35.    Li E, Chi H, Huang P, Yan F, Zhang Y, Liu C, et al. A novel Bacterium-Like particle vaccine displaying the MERS-COV Receptor-Binding domain induces specific mucosal and systemic immune responses in mice. Viruses [Internet]. 2019; Aug 29; 11(9): 799. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6784119/
36.    Demaret J, Corroyer-Simovic B, Alidjinou EK, Goffard A, Trauet J, Miczek S, et al. Impaired functional T-Cell response to SARS-COV-2 after two doses of BNT162B2 mRNA vaccine in older people. Frontiers in Immunology [Internet]. 2021; Nov 16; 12. Available from: https://pubmed.ncbi.nlm.nih.gov/34868051/
37.    Cancer vaccines and immunotherapy [Internet]. History of Vaccines. Available from: https://historyofvaccines.org/vaccines-101/future-immunization/cancer-vaccines-and-immunotherapy
38.    Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced Drug Delivery Reviews [Internet]. 2021; Oct 11; 179: 114000. Available from: https://pubmed.ncbi.nlm.nih.gov/34637846/
39.    https://www.cdc.gov/vaccines/schedules/downloads/adult/adult-combined-schedule.pdf
40.    Donnelly RF. Vaccine delivery systems. Human Vaccines & Immunotherapeutics [Internet]. 2017; Jan 2; 13(1): 17–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28125375/
41.    Winkelmann A, Loebermann M, Barnett M, Hartung HP, Zettl UK. Vaccination and immunotherapies in neuroimmunological diseases. Nature Reviews Neurology [Internet]. 2022; Apr 6; 18(5): 289–306. Available from: https://pubmed.ncbi.nlm.nih.gov/35388213/
42.    Leclerc C. New approaches in vaccine development. Comparative Immunology Microbiology and Infectious Diseases [Internet]. 2003; Apr 23; 26(5–6): 329–41. Available from: https://pubmed.ncbi.nlm.nih.gov/12818620/
43.    Riedmann EM. Human Vaccines & Immunotherapeutics: News. Human Vaccines & Immunotherapeutics [Internet]. 2014; Jul 7; 10(7): 1773–7. Available from: https://pubmed.ncbi.nlm.nih.gov/25424781/
44.    Singh J, Bowne WB, Snook AE. Cancer vaccines and immunotherapy for tumor prevention and treatment. Vaccines [Internet]. 2021; Nov 9; 9(11): 1298. Available from: https://pubmed.ncbi.nlm.nih.gov/34835229/
45.    Azzi L, Gasperina DD, Veronesi G, Shallak M, Ietto G, Iovino D, et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine [Internet]. 2021; Dec 23; 75: 103788. Available from: https://pubmed.ncbi.nlm.nih.gov/34954658/
46.    Majid L, Radhakrishnan S, Ramachandran V, Muthukumarasamy R. Review on COVID-19 vaccines. Research Journal of Pharmacy and Technology [Internet]. 2022 Dec 24;5868–74. Available from: https://rjptonline.org/AbstractView.aspx?PID=2022-15-12-84
47.    Haji SA, Alneama RT, Ghazzawi NSSA. Acceptance of COVID -19 vaccines and associated barriers among dental students at college of Dentistry, University of Basrah: A cross-sectional study. Research Journal of Pharmacy and Technology [Internet]. 2023; Aug 31; 3608–14. Available from: https://rjptonline.org/AbstractView.aspx?PID=2023-16-8-15
48.    Jangam KK, Vikhe DN, Jadhav RS, Shinde GS. A review on variant of concern (Delta variant of COVID 19). Asian Journal of Research in Pharmaceutical Sciences [Internet]. 2022; May 25; 146–50. Availablefrom: https://www.researchgate.net/publication/367681118_A_Review_on_Variant_of_Concern_Delta_Variant_of_COVID_19
49.    Sevak G, Chauhan YS, Parihar N, Rathore MS. Review of novel corona virus disease (COVID-19) in India [Internet]. Sevak | Research Journal of Pharmacology and Pharmacodynamics. 2022. Available from: https://www.i-scholar.in/index.php/Rjppd/article/view/218751
50.    Finn OJ. Cancer immunology. New England Journal of Medicine [Internet]. 2008; Jun 18; 358(25): 2704–15. Available from: https://pubmed.ncbi.nlm.nih.gov/18565863/
51.    Francis MJ. Recent advances in vaccine technologies. Veterinary Clinics of North America Small Animal Practice [Internet]. 2017; Dec 6; 48(2): 231–41. Available from: https://pubmed.ncbi.nlm.nih.gov/29217317/
52.    Plotkin SA. Nouvelles stratégies de la vaccination. Bulletin De L Académie Nationale De Médecine [Internet]. 2008; Mar 1; 192(3): 511–9. Available from: https://www.researchgate.net/publication/334450008_Nouvelles_strategies_de_la_vaccination
53.    Leclerc C. New approaches in vaccine development. Comparative Immunology Microbiology and Infectious Diseases [Internet]. 2003; Apr 23; 26(5–6):329–41. Available from: https://pubmed.ncbi.nlm.nih.gov/12818620/
54.    Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: opportunities, challenges, and future directions. The Lancet [Internet]. 2019 Oct 1;394(10206):1376–86. Available from: https://pubmed.ncbi.nlm.nih.gov/31609229/
55.    Maheswari K, Kavitha, Malairani. Knowledge of mothers regarding newer vaccines and vaccines preventable diseases [Internet]. 2015. Availablefrom:https://ijanm.com/HTMLPaper.aspx?Journal=International%20Journal%20of%20Advances%20in%20Nursing%20Management;PID=2015-3-2-7
56.    Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nature Reviews Microbiology [Internet]. 2011 Oct 3;9(12):889–93. Available from: https://www.nature.com/articles/nrmicro2668
57.    Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Identification of the mechanisms causing reversion to virulence in an attenuated SARS-COV for the design of a genetically stable vaccine. PLoS Pathogens [Internet]. 2015 Oct 29;11(10):e1005215. Available from: https://pubmed.ncbi.nlm.nih.gov/26513244/
58.    Ma Y, Hou L, Yang X, Huang Z, Yang X, Zhao N, et al. The association between frailty and severe disease among COVID-19 patients aged over 60 years in China: a prospective cohort study. BMC Medicine [Internet]. 2020 Sep 7;18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32892742/
59.    Team M. Frontiers in Immunology Vaccines and Molecular Therapeutics [Internet]. Frontiers. Available from: https://www.frontiersin.org/journals/immunology/sections/vaccines-and-molecular-therapeutics
60.    Makela PH. Vaccines, coming of age after 200 years. FEMS Microbiology Reviews [Internet]. 2000; Jan 1; 24(1): 9–20. Available from: https://pubmed.ncbi.nlm.nih.gov/10640596/

Recomonded Articles:

Author(s): Yogita R Mandlik

DOI: 10.5958/0975-4377.2020.00046.4         Access: Open Access Read More

Author(s): Sarika Gupta, Victor Alert, Arti Gupta

DOI: 10.52711/0975-4377.2025.00011         Access: Closed Access Read More

Research Journal of Pharmaceutical Dosage Forms and Technology (RJPDFT) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. ...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0975-4377 


Recent Articles




Tags