Author(s):
Shailaja Pashikanti, Sudhakar Reddy. N, Reshma Sanapala, Shiva Kumar. M
Email(s):
drpshailaja@andhrauniversity.edu.in , reddysudhakar034@gmail.com , sanapalareshma2000@gmail.com , sr8300763@gmail.com
DOI:
10.52711/0975-4377.2025.00005
Address:
Shailaja Pashikanti1, Sudhakar Reddy. N2, Reshma Sanapala3, Shiva Kumar. M4
1Associate Professor, Department of Pharmaceutics, Andhra University, Visakhapatnam, 530003, India.
2M. Pharmacy, Department of Pharmaceutics, Andhra University, Visakhapatnam, 530003, India.
3M. Pharmacy, Department of Pharmaceutics, Andhra University, Visakhapatnam, 530003, India.
4AGM-Formulation R&D, Lee Pharma Limited, Visakhapatnam, 530049, Andhra Pradesh, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 1,
Year - 2025
ABSTRACT:
Neural networks are a key component of formulation design, and the integration of artificial intelligence (AI) into drug development is revolutionizing the pharmaceutical industry. To solve the issues of cost, accuracy, and efficiency, AI-powered models—in particular, deep learning networks—are being used more and more to forecast and optimize medication compositions. Neural networks are capable of predicting solubility, stability, and bioavailability as well as suggesting optimal compositions by examining large datasets and identifying non-linear correlations between formulation components. The time required to produce new medications is greatly decreased by this methodology, which speeds up the conventional trial-and-error method. AI may also improve personalized medicine by customizing medication formulas to meet the demands of each patient. The use of neural networks in drug formulation is examined in this research, which also highlights recent developments, difficulties, and potential paths for AI-powered drug development.
Cite this article:
Shailaja Pashikanti, Sudhakar Reddy. N, Reshma Sanapala, Shiva Kumar. M. AI-Powered Formulation Design: Neural Networks in Drug Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):31-6. doi: 10.52711/0975-4377.2025.00005
Cite(Electronic):
Shailaja Pashikanti, Sudhakar Reddy. N, Reshma Sanapala, Shiva Kumar. M. AI-Powered Formulation Design: Neural Networks in Drug Development. Research Journal of Pharmaceutical Dosage Forms and Technology. 2025; 17(1):31-6. doi: 10.52711/0975-4377.2025.00005 Available on: https://rjpdft.com/AbstractView.aspx?PID=2025-17-1-5
REFERENCES:
1. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine. 2006; Dec 15; 27(4): 12-12. https://doi.org/10.1609/aimag.v27i4.1904
2. Jiang J, Ma X, Ouyang D, Williams III RO. Emerging artificial intelligence (AI) technologies used in the development of solid dosage forms. Pharmaceutics. 2022 Oct 22; 14(11): 2257. https://doi.org/10.3390/pharmaceutics14112257
3. Ethem Alpaydin. Introduction to Machine Learning, fourth edition. Adaptive computation and machine learning series, MIT Press, 2020
4. Zain Amin, M.; Ali, A. Performance Evaluation of Supervised Machine Learning Classifiers for Predicting Healthcare Operational Decisions; Technical Report; University of California: Irvine, CA, USA, 2017. https://doi.org/10.3390/pharmaceutics14112257
5. Berk R. An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. Journal of Experimental Criminology. 2017; Jun; 13: 193-216. https://doi.org/10.1007/s11292-017-9286-2
6. Berk RA, Sorenson SB, Barnes G. Forecasting domestic violence: A machine learning approach to help inform arraignment decisions. Journal of Empirical Legal Studies. 2016; Mar; 13(1): 94-115. https://doi.org/10.1111/jels.12098
7. LeCun Y, Bengio Y, Hinton G. Deep learning. nature. 2015; May 28; 521(7553): 436-44. https://doi.org/10.1038/nature14539
8. Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Carvalho, A.C.P.d.L.F. Deep Learning for Biological Image Classification. Expert Syst. Appl. 2017, 85, 114–122. https://doi.org/10.1016/j.eswa.2017.05.039.
9. Ajay I. Patel, Pooja K. Khunti, Amit J. Vyas, Ashok B. Patel. Explicating Artificial Intelligence: Applications in Medicine and Pharmacy. Asian Journal of Pharmacy and Technology. 2022; 12(4): 401-6.
10. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M. Deep learning for generic object detection: A survey. International Journal of Computer Vision. 2020; Feb; 128: 261-318. https://doi.org/10.1007/s11263-019-01247-4.
11. Suyash Ingale, Nikhil Shrisunder, Ganesh Gophane, Avinash Birajdar. Ascent of Artificial Intelligence (AI) in Pharmacy. International Journal of Technology. 2024; 14(1): 54-8.
12. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J. A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857. 2017 Apr 22. https://doi.org/10.48550/arXiv.1704.06857
13. Xu Z, Sun J. Model-driven deep-learning. National Science Review. 2018; Jan 1; 5(1): 22-4. https://academic.oup.com/nsr/article/5/1/22/4093908
14. Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. Deep learning in medical image analysis: challenges and applications. 2020: 3-21. https://doi.org/10.1007/978-3-030-33128-3_1.
15. Shaikh Habeeba. Use of Artificial Intelligence in Drug Discovery and its Application in Drug Development. Asian Journal of Research in Chemistry. 2023; 16(1): 83-0.
16. Prasad Patil, Nripesh Kumar Nrip, Ashok Hajare, Digvijay Hajare, Mahadev K. Patil, Rajesh Kanthe, Anil T. Gaikwad. Artificial Intelligence and Tools in Pharmaceuticals: An Overview. Research Journal of Pharmacy and Technology. 2023; 16(4): 2075-2.
17. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019: Mar 1; 24(3): 773-80. https://doi.org/10.1016/j.drudis.2018.11.014.
18. Bhushan S. Mahajan, Bhupendra Sing P. Mahale, Amol R. Pawar, Vikas V. Patil, Pankaj S. Patil, Jayesh Songire. A Review on Artificial Intelligence in Pharmacy. Research Journal of Science and Technology. 2024; 16(2):129-6.
19. R. R. Kulkarni, P. S. Pawar. Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2023; 13(4): 304-6.
20. Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015; Jan 1; 61: 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
21. Ha D, Schmidhuber. J. World models. arXiv preprint arXiv:1803.10122. 2018; Mar 27. https://doi.org/10.48550/arXiv.1803.10122
22. Colombo S. Applications of artificial intelligence in drug delivery and pharmaceutical development. In Artificial Intelligence in Healthcare 2020 Jan 1 (pp. 85-116). Academic Press.https://doi.org/10.1016/B978-0-12-818438-7.00004-6
23. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. 2019; Sep 26. https://doi.org/10.48550/arXiv.1909.11942
24. Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv: 1810.04805. 2018; Oct 11. https://doi.org/10.48550/arXiv.1810.04805
25. Conneau A, Khandelwal K, Goyal N, Chaudhary V, Wenzek G, Guzmán F, Grave E, Ott M, Zettlemoyer L, Stoyanov V. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv: 1911.02116. 2019; Nov 5.https://doi.org/10.18653/v1/2020.acl-main.747
26. Jing L, Tian Y. Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020; May 4; 43(11): 4037-58. https://doi.org/10.48550/arXiv.1902.06162
27. Kolesnikov A, Zhai X, Beyer L. Revisiting self-supervised visual representation learning. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019; (pp. 1920-1929). https://doi.org/10.48550/arXiv.1901.09005
28. He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020; (pp. 9729-9738). https://doi.org/10.1109/CVPR42600.2020.00975
29. Goyal P, Caron M, Lefaudeux B, Xu M, Wang P, Pai V, Singh M, Liptchinsky V, Misra I, Joulin A, Bojanowski P. Self-supervised pretraining of visual features in the wild. arXiv preprint arXiv:2103.01988. 2021; Mar 2. https://doi.org/10.48550/arXiv.2103.01988.
30. Sahil Mahajan, Heemani Dave, Santosh Bothe, Debarshikar Mahpatra, Sandeep Sonawane, Sanjay Kshirsagar, Santosh Chhajed. Objective Monitoring of Cardiovascular Biomarkers using Artificial Intelligence (AI). Asian Journal of Pharmaceutical Research. 2022; 12(3): 229-4.
31. Peikari M, Salama S, Nofech-Mozes S, Martel AL. A cluster-then-label semi-supervised learning approach for pathology image classification. Scientific Reports. 2018; May 8; 8(1): 1-3. https://doi.org/10.1038/s41598-018-24876-0
32. Taleb A, Loetzsch W, Danz N, Severin J, Gaertner T, Bergner B, Lippert C. 3d self-supervised methods for medical imaging. Advances in Neural Information Processing Systems. 2020; 33: 18158-72.
33. Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, Roth HR, Xu D. Unetr: Transformers for 3d medical image segmentation. InProceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision 2022 (pp. 574-584). https://doi.org/10.1109/WACV51458.2022.00181
34. Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. Self-supervised learning for medical image analysis using image context restoration. Medical Image Analysis. 2019; Dec 1; 58: 101539. https://doi.org/10.1016/j.media.2019.101539.
35. Pardeep Kumar Sharma, Amit Sachdeva, Cherry Bhargava. Fuzzy logic: A tool to predict the Renal diseases. Research Journal of Pharmacy and Technology. 2021; 14(5): 2598-2.
36. Valdes G, Luna JM, Eaton E, Simone CB, Ungar LH, Solberg TD. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. Scientific Reports. 2016; Nov 30; 6(1): 37854. https://doi.org/10.1038/srep37854.
37. Mehrotra K, Mohan CK, Ranka S. Elements of Artificial Neural Networks. MIT Press; 1997.
38. Thakur A, Konde A. Fundamentals of neural networks. International Journal for Research in Applied Science and Engineering Technology. 2021; 9(VIII):407-26.
39. Thakur A, Rizvi H, Satish M. White-box cartoonization using an extended gan framework. arXiv preprint arXiv:2107.04551. 2021 Jul 9.https://doi.org/10.33564/IJEAST.2021.v05i12.049
40. Fine TL. Feedforward neural network methodology. Springer Science & Business Media; 2006 Apr 6.
41. Sanjay S. Patel, Sparsh A. Shah. Artificial Intelligence: Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology. 2022; 12(4):337-8
42. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena. 2020; Mar 1; 404: 132306.https://doi.org/10.1016/j.physd.2019.132306
43. Vt SE, Shin YC. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Transactions on Neural Networks. 1994; Jul; 5(4): 594-603. doi: 10.1109/72.298229
44. Pal SK, Mitra S. Multilayer perceptron, fuzzy sets, classifiaction. doi: 10.1109/72.159058
45. Happel BL, Murre JM. Design and evolution of modular neural network architectures. Neural networks. 1994; Jan 1; 7(6-7): 985-1004.https://doi.org/10.1016/S0893-6080(05)80155-8
46. Chiu CC, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z, Kannan A, Weiss RJ, Rao K, Gonina E, Jaitly N. State-of-the-art speech recognition with sequence-to-sequence models. In2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018 Apr 15 (pp. 4774-4778). IEEE. doi: 10.1109/ICASSP.2018.8462105.
47. Subramanian N, Yajnik A, Murthy RS. Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parmaeters of cytarabine liposomes. AAPS PharmSciTech. 2004; Mar; 5: 11-9. https://doi.org/10.1208/pt050104
48. Takahara J, Takayama K, Isowa K, Nagai T. Multi-objective simultaneous optimization based on artificial neural network in a ketoprofen hydrogel formula containing O-ethylmenthol as a percutaneous absorption enhancer. International Journal of Pharmaceutics. 1997; Dec 8; 158(2): 203-10. https://doi.org/10.1016/S0378-5173(97)00260-3
49. Wu PC, Obata Y, Fujikawa M, Li CJ, Higashiyama K, Takayama K. Simultaneous optimization based on artificial neural networks in ketoprofen hydrogel formula containing O-ethyl-3-butylcyclohexanol as percutaneous absorption enhancer. Journal of Pharmaceutical Sciences. 2001; Aug 1; 90(8): 1004-14. https://doi.org/10.1002/jps.1053.
50. Shraddha Jain, Sanket Jain, Dr. Sujit Pillai, Rampal Singh Mandloi. Review article on Role of Artificial Intelligence in Radiology. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3): 264-0
51. Plumb AP, Rowe RC, York P, Doherty C. The effect of experimental design on the modeling of a tablet coating formulation using artificial neural networks. European Journal of Pharmaceutical Sciences. 2002; Sep 1; 16(4-5): 281-8. https://doi.org/10.1016/S0928-0987(02)00112-4
52. Leane MM, Cumming I, Corrigan OI. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets. Aaps Pharmscitech. 2003; Jun; 4: 129-40. doi: 10.1208/pt040226
53. Chen Y, McCall TW, Baichwal AR, Meyer MC. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. Journal of Controlled Release. 1999; May 1; 59(1): 33-41. https://doi.org/10.1016/S0168-3659(98)00171-0
54. Ibrić S, Jovanović M, Djurić Z, Parojčić J, Solomun L. The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit® RS PO as matrix substance. Journal of Controlled Release. 2002; Aug 21; 82(2-3): 213-22. https://doi.org/10.1016/S0168-3659(02)00044-5
55. Takayama K, Morva A, Fujikawa M, Hattori Y, Obata Y, Nagai T. Formula optimization of theophylline controlled-release tablet based on artificial neural networks. Journal of Controlled Release. 2000; Aug 10; 68(2): 175-86. https://doi.org/10.1016/S0168-3659(00)00248-0
56. Ibrić S, Jovanović M, Djurić Z, Parojčić J, Petrović SD, Solomun L, Stupar B. Artificial neural networks in the modeling and optimization of aspirin extended release tablets with Eudragit L 100 as matrix substance. Aaps Pharmscitech. 2003; Mar; 4: 62-70. https://doi.org/10.1208/pt040109
57. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Comparison of artificial neural networks (ANN) with classical modelling techniques using different experimental designs and data from a galenical study on a solid dosage form. European Journal of Pharmaceutical Sciences. 1998; Oct 1; 6(4): 287-300.https://doi.org/10.1016/S0928-0987(97)10025-2
58. Bourquin J, Schmidli H, van Hoogevest P, Leuenberger H. Pitfalls of artificial neural networks (ANN) modelling technique for data sets containing outlier measurements using a study on ixture properties of a direct compressed dosage form. European Journal of Pharmaceutical Sciences. 1998; Dec 1; 7(1): 17-28. https://doi.org/10.1016/S0928-0987(97)10027-6
59. Bozič DZ, Vrečer F, Kozjek F. Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network. European Journal of Pharmaceutical Sciences. 1997; May 1;5(3):163-9. https://doi.org/10.1016/S0928-0987(97)00273-X
60. Zolotariov E, Anwar J. Modelling properties of powders using artificial neural networks and regression: the case of limited data. Journal of Pharmacy and Pharmacology. 1998; Sep; 50(Supplement_9):190. https://doi.org/10.1111/j.2042-7158.1998.tb02390.x
61. Ibric S, Jovanovic M, Djuric Z, Parojcic J, Solomun L. Artificial neural networking (ANN) and modeling of powder flow. J Cont Release 2002;82:213e22. https://doi.org/10.1211/jpp.59.5.0017
62. Peh KK, Lim CP, Quek SS, Khoh KH. Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharmaceutical Research. 2000; Nov; 17: 1384-9. https://doi.org/10.1023/A:1007578321803
63. Pillay V, Danckwerts MP. Textural profiling and statistical optimization of crosslinked calcium‐alginate‐pectinate‐cellulose acetophthalate gelisphere matrices. Journal of Pharmaceutical Sciences. 2002; Dec; 91(12): 2559-70.https://doi.org/10.1002/jps.10251
64. Değim T, Hadgraft J, İlbasmiş S, Ozkan Y. Prediction of skin penetration using artificial neural network (ANN) modeling. Journal of Pharmaceutical Sciences. 2003; Mar; 92(3): 656-64. https://doi.org/10.1002/jps.10312
65. Kandimalla KK, Kanikkannan N, Singh M. Optimization of a vehicle mixture for the transdermal delivery of melatonin using artificial neural networks and response surface method. Journal of Controlled Release. 1999; Aug 27; 61(1-2): 71-82. https://doi.org/10.1016/S0168-3659(99)00107-8
66. Murtoniemi E, Yliruusi J, Kinnunen P, Merkku P, Leiviskä K. The advantages by the use of neural networks in modelling the fluidized bed granulation process. International Journal of Pharmaceutics. 1994; Aug 1; 108(2): 155-64. https://doi.org/10.1016/0378-5173(94)90327-1
67. Gasperlin M, Tusar L, Tusar M, Kristl J, Smid-Korbar J. Lipophilic semisolid emulsion systems: viscoelastic behaviour and prediction of physical stability by neural network modelling. International Journal of Pharmaceutics. 1998;168(2):243-54. Doi:10.1016/S0378-5173(98)00099-4