REFERENCES:
1. C. Lipinski. Poor aqueous solubility—an industry wide problem in drug discovery. American Pharmaceutical Review, 5 (2002), pp. 82-85.
2. Alekya K, Narendar D, Arjun N, Mahipal D and Nagaraj B. Design and evaluation of chronomodulated drug delivery of tramadol hydrochloride. Drug res. 2017; Early online.
3. A.M. Palmer. New horizons in drug metabolism, pharmacokinetics and drug discovery. Drug News and Perspectives, 16 (2003), pp. 57-62.
4. Rajitha R, Narendar D, Arjun N, Mahipal D and Nagaraj B. Colon delivery of naproxen: preparation, characterization and in vivo evaluation. IJPSN, 2016; 9(3): 1-10.
5. B.G. Prajapati, M. Patel. Conventional and alternative methods to improve oral bioavailability of lipophilic drugs. Asian Journal of Pharmaceutical, 1 (2007), pp. 1-8.
6. Mahipalreddy D, Narendar D, Devendhar K, Dinesh S, Kiran S, Nagaraj B. Preparation and evaluation of ketoprofen enteric coated mini tablets for prevention of chronic inflammatory disease. J Pharm Drug Deliv Res. 2015; 4(2).
7. Narendar Dudhipala, Arjun Narala and Ramesh Bomma. Recent Updates in the Formulation Strategies to Enhance the Bioavailability of Drugs Administered via Intranasal Route. J bioequ avail. 2016, 8(5), 204-207.
8. Arun B. Reddy and Narendar D. Development of Multiple-Unit Floating Drug Delivery System of Clarithromycin: Formulation, in vitro dissolution by modified dissolution apparatus, in vivo radiographic studies in human volunteers. Drug res 2017; 67: 412-418.
9. Viswanathan S, N. Vinoth Kumar, Prathiba Srinivasan, S. Prabhu. Nanoparticle-Mediated Drug Delivery Systems. Research J. Engineering and Tech. Oct.-Dec., 2013; 4(4): 295-299.
10. Narendar D, Arjun N, Sunitha K, Harika K, Nagaraj B. Development of osmotically controlled oral drug delivery systems of tramadol hydrochloride: effect of formulation variables on in-vitro release kinetics. Asian J Pharm. 2016; 10(3): 1-10.
11. Arun Butreddy, Narendar D. Enhancement of solubility and dissolution rate of trandolapril sustained release matrix tablets by liquisolid compact approach. Asian Journal of Pharmaceutics, , 2015; 9(4): 290-297.
12. Dudhipala, N. A comprehensive review on solid lipid nanoparticles as delivery vehicle for enhanced pharmacokinetic and pharmacodynamic activity of poorly soluble drugs. Int J Pharm sci nanotech. 2019; 12(2): 4421-4440.
13. Nikita R. Nikam, Priyanka R. Patil, R. R. Vakhariya, C. S. Magdum. Liposomes: A Novel Drug Delivery System: An Overview. Asian J. Pharm. Res. 2020; 10(1): 23-28.
14. Arjun N, Narendar D, Sunitha K, Harika K, Madhusudan Rao Y and Nagaraj B. Development, evaluation and influence of formulation and process variables on in vitro performance of oral elementary osmotic device of atenolol. Int J Pharm Invest, 2016; 6(4): 1-9.
15. Chinna Reddy Palem, Narendar D, Sunil Kumar Battu, Satyanarayana Goda, and Madhusudan Rao Yamsani. Combined dosage form of pioglitazone and felodipine as mucoadhesive pellets via hot melt extrusion for improved buccal delivery with application of quality by design approach. J Drug Del Sci Tech. 2015; 30: 209-219.
16. Narendar D, Arjun, N., Dinesh, S., and Karthik, J. (2016). Biopharmaceutical and Preclinical Studies of Efficient Oral Delivery of Zaleplon as Semisolid Dispersions with Self-emulsifying Lipid Surfactants. Int J Pharma Sci and Nanotech, 9(1): 1-8.
17. Ettireddy S, and Reddy ND. (2017). Influence of β-cyclodextrin and hydroxypropyl-β-cyclodextrin on enhancement of solubility and dissolution of isradipine. Int J Pharma Sci and Nanotech, 10(3): 3752-3757.
18. Palem CR, Ramesh, G., Doodipala N, Vamshi, V, Y., and Madhusudan R, Y. (2011). Transmucosal delivery of domperidone from bilayered buccal patches: in vitro, ex vivo and in vivo characterization. Arch Pharm Res, 34(10): 1701-1710.
19. Chinna PR, Reddy ND., Sunil, B., Repka, M.A., and Yamsani MR. (2016). Development, Optimization and in vivo Characterization of Domperidone Controlled Release Hot Melt Extruded Films for Buccal Delivery. Drug Dev Ind Pharm, 42(3): 473-484.
20. Desai, S. and Bolton, S. A Floating Controlled-Release Drug Delivery System: In Vitro-in Vivo Evaluation. Pharm Res 1993; 10(9): 1321-1325.
21. Reddy, N.D., Chinna R. P., Sunil, R., and and Madhusudan, R. Y. (2012). Development of floating matrix tablets of Ofloxacin and Ornidazole in combined dosage form: in vitro and in vivo evaluation in healthy human volunteers. Int J Drug Deli, 4: 462-469.
22. Donthi MR, Dudipala N, Komalla DR, Suram D, Banala N. Design and Evaluation of Floating Multi Unit Mini Tablets (MUMTS) Muco Adhesive Drug Delivery System of Famotidine to Treat Upper Gastro Intestinal Ulcers. Journal of Pharmacovigilance. 2015 Oct 12.
23. Dudipala R, Palem, C.R., Reddy, S., and Rao, Y.M. (2011). Pharmaceutical development and clinical pharmacokinetic evaluation of gastroretentive floating matrix tablets of levofloxacin. Int J Pharma Sci and Nanotech, 4(3): 1461-1467.
24. Donthi MR, Dudhipala NR, Komalla DR, Suram D, Banala N. Preparation and Evaluation of Fixed Combination of Ketoprofen Enteric Coated and Famotidine Floating Mini Tablets by Single Unit Encapsulation System. Journal of Bioequivalence and Bioavailability. 2015; 7(6): 279.
25. Pitta S, Dudhipala N, Narala A and Veerabrahma K. Development and evaluation of zolmitriptan transfersomes by Box-Behnken design for improved bioavailability by nasal delivery. Drug Dev Ind Pharm, 2018; 44(3): 484-492.
26. Dattatraya M. Shinkar, Pinak S. Paralkar, R.B. Saudagar. An Overview on Trends and Developments in Liposome – as Drug Delivery System. Asian J. Pharm. Tech. 2015; 5(4): 231-237.
27. Shruthi K, Narendar D, Arjun N, Kishan V. Development and Antimicrobial Evaluation of Binary Ethosomal Topical Gel of Terbinafine Hydrochloride for the Treatment of Onychomycosis. Int. J. Pharm. Sci. Nanotechnol. 2018; 11: 3998-4005.
28. Sweeney C, Dudhipala N, Thakkar R, Mehraj T, Marathe S, Gul W, ElSohly MA, Murphy B, Majumdar S. Effect of surfactant concentration and sterilization process on intraocular pressure–lowering activity of Δ 9-tetrahydrocannabinol-valine-hemisuccinate (NB1111) nanoemulsions. Drug delivery and translational research. 2020 Nov 9:1-2.
29. Reddy ND and Kishan V. Candesartan cilexetil nanoparticles for improved oral bioavailability. Ther deli, 2017; 8(2): 79-88.
30. Somasundaram I, B.V. Nagarjuna Yadav, S. Sathesh Kumar. Formulation of PLGA Polymeric Nanosuspension containing Pramipexole Dihydrochloride for improved treatment of Parkinson’s Diseases. Research J. Pharm. and Tech. 2016; 9(7): 810-816.
31. Doodipala R. A review of novel formulation strategies to enhance oral delivery of zaleplon. J Bioequvi avail. 2016; 8(5): 211-213.
32. Nagaraj B, Anusha K, Narendar D, Sushma P. Formulation and evaluation of microemulsion-based transdermal delivery of duloxetine hydrochloride. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020 Jan 31; 13(1): 4773-82.
33. Allen TM. Liposomes. Opportunities in drug delivery. Drugs. 1997; 54(4): 8–14.
34. Abolfazl Akbarzadeh,1 Rogaie Rezaei-Sadabady,1,2 Soodabeh Davaran,1 Sang Woo Joo,5 Nosratollah Zarghami,1 Younes Hanifehpour,5 Mohammad Samiei,3 Mohammad Kouhi, and Kazem Nejati-Koshki. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8(1): 102.
35. Narendar D, Riyaz PMD, Ahmed AY, Nagaraj B. Effect of lipid and edge activator concentration on development of Aceclofenac loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Dru Dev Ind Pharm. 2020; 46(8): 1334-1344.
36. Derle D.V., Kasliwal N.H., Gandhi P.P., Yeole D.R. Development, Characterization and Evaluation of Niosomes and Liposomes of Bacitracin Zinc. Research J. Pharm. and Tech. Oct.-Dec. 2010; 3(4): 1295-1300.
37. Karhik JY, Jukanti, R., Velpula, A., Sunkavalli, S., Bandari, S., and Kandadi, P. (2012). Bioavailability enhancement of zaleplon via proliposomes: Role of surface charge. Eur J Pharma and Biopharma, 80(2): 347-357.
38. Shehata T, Ogawara K, Higaki K, Kimura T. Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm. 2008; 359: 272–279.
39. Johnston MJ, Semple SC, Klimuk SK, Ansell S, Maurer N, Cullis PR. Characterization of teh drug retention and pharmacokinetic properties of liposomal nanoparticles containing dihydrosphingomyelin. Biochim Biophys Acta. 2007; 1768: 1121–1127.
40. Chang Chu, Shan-shan Tong, Ying Xu, Li Wang, Min Fu, Yan-ru Ge, Jiang-nan Yu and Xi-ming Xu. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo. Acta Pharmacologica Sinica 2011; 32: 973–980.
41. Nallaguntla Lavanya,1 Yallamalli Indira Muzib, JiTEMPthan Aukunuru,2 and Umamahesh Balekari. Preparation and evaluation of a novel oral delivery system for low molecular weight heparin. Int J Pharm Investig. 2016 Jul-Sep; 6(3): 148–157.
42. Vijaykumar Nekkanti, Z Wang, Guru V. Betagiri. Pharmacokinetic Evaluation of Improved Oral Bioavailability of Valsartan: Proliposomes Versus Self-Nanoemulsifying Drug Delivery System. AAPS PharmSciTech 2016, 17(4); 851–862.
43. Cosco D1, Paolino D, Muzzalupo R, Celia C, Citraro R, Caponio D, Picci N, Fresta M. Novel PEG-coated niosomes based on bola-surfactant as drug carriers for 5-fluorouracil. Biomed Microdevices. 2009; 11(5): 1115-25.
44. Rampal R, Kalpana N, Shailendra Kumar S, and Dina Nath M. Niosomes: A Controlled and Novel Drug Delivery System. Biol. Pharm. Bull. 2011; 34(7): 945—953.
45. Jangam Payal R, Thombre Nilima A, Gaikwad Pallavi N. A Review: Proniosomes as a Novel Drug Delivery System. Asian J. Pharm. Tech. 2017; 7(3): 166-174.
46. Toshimitsu Yoshioka, Brigitte Sternberg, Alexander T. Florence. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). International Journal of Pharmaceutics.. 1994; 105(1): 1-6.
47. Aranya Manosroi, Paveena Wongtrakul, Jiradej Manosroi, Hideki Sakaie, Fumio Sugawara, Makoto Yuasa, Masahiko Abe. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf., Biointerfaces, 30, 129-138 (2003).
48. Ismail A. Attia, Sanaa A. El-Gizawy, Medhat A. Fouda, and Ahmed M. Donia. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS PharmSciTech. 2007; 8(4): 206–212.
49. Jadon P.S., Gajbhiye V., Rajesh S.J., Kavita R., Narayanan G.. A Controlled and Novel Drug Delivery System. AAPS Pharm.Sci.Tech. 2009; 10: 1187-1192.
50. Gyati Shilakari AsTEMPthana, * Parveen Kumar Sharma, and Abhay AsTEMPthana. In Vitro and In Vivo Evaluation of Niosomal Formulation for Controlled Delivery of Clarithromycin. Scientifica (Cairo). 2016; 2016: 6492953.
51. H. O. Ammar, M. Haider, M. Ibrahim andN. M. El Hoffy. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug delivery, 2017, 24(1): 414-421.
52. Tamizharasi S, Dubey A, Rathi V1, Rathi JC. Development and Characterization of Niosomal Drug Delivery of Gliclazide. J Young Pharm. 2009; 1(3): 205-209.
53. Müller, R.H., Mäder, K., and Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm, 50(1): 161-177.
54. Rohan R. Vakhariya, Swati S. Talokar, V. R. Salunkhe, C. S. Magdum. Formulation Development and Optimization of Simvastatin Loaded Solid Lipid Nanoparticles. Asian J. Res. Pharm. Sci. 2017; 7(1): 49-52.
55. Gorre T, Swetha E and Reddy D. Role of isradipine loaded solid lipid nanoparticles in the pharmacodynamic effect of isradipine in rats. Drug res, 2017; 67(03): 163-169.
56. Dudhipala N. Influence of Solid Lipid Nanoparticles on Pharmaco-dynamic Activity of Poorly Oral Bioavailable Drugs. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020 Jul 11; 13(4): 4979-83.
57. S. Mukherjee, S. Ray, and R. S. Thakur. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug
58. Narendar D, Govardhan K. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1, 2-dimethylhydrazine induced colon cancer: Preparation, cytotoxic, pharmacokinetic and pathological evaluation. Drug dev Ind pharm, Eraly online, March 2018. doi: 10.1080/03639045.2018.1445264.
59. Akshaya Tatke, Narendar Dudhipala, Karthik Yadav Janga, Sai Prachetan Balguri, Bharathi Avula, Monica M. Jablonski Soumyajit Majumdar. In Situ Gel of Triamcinolone Acetonide-Loaded Solid Lipid Nanoparticles for Improved Topical Ocular Delivery: Tear Kinetics and Ocular Disposition Studies. Nanomaterials (Basel). 2018 Dec 27;9(1). pii: E33. doi: 10.3390/ nano9010033.
60. Hao J1, Wang F, Wang X, Zhang D, Bi Y, Gao Y, Zhao X, Zhang Q. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci. 2012 Sep 29; 47(2): 497-505.
61. Venishetty VK1, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B Biointerfaces. 2012 Jun 15; 95: 1-9.
62. Narendar, D., and Kishan, V. (2015). Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev Ind Pharm, 41(12): 1968-77.
63. Suvarna, G., Reddy D., and Kishan, V. (2015). Preparation, characterization and in vivo evaluation of rosuvastatin calcium loaded solid lipid nanoparticles. Int J Pharma Sci and Nanotech, 8(1), 2779-2785.
64. Usha, G., Dudhipala N., and Veerabrahma K. (2015). Preparation, characterization and in vivo evaluation of felodipine solid lipid nanoparticles to improve the oral bioavailability. Int J Pharma Sci Nanotech. 8 (4), 2995-3002.
65. Sandeep, V., Reddy ND, Arjun, N., and Kishan, V. (2016). Lacidipine loaded solid lipid nanoparticles for oral delivery: Preparation, characterization and In vivo evaluation. Int J Pharma Sci Nanotech, 9(6): 3524-30.
66. Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug delivery. 2016 Feb 12; 23(2): 395-404.
67. Dudhipala N, and Veerabrahma K. (2017). Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: pharmacokinetic and pharmacodynamic evaluation. Euro J Pharm Biopharm. 110(1); 47-57.
68. Reddy N and Janga KY. Lipid nanoparticles of zaleplon for improved oral delivery by Box-Behnken design: Optimization, in vitro and in vivo evaluation. Drug Dev Ind Pharm, 2017; 43(7): 1205-1214.
69. Arun, B., Reddy ND, and Kishan, V. (2018). Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artificial cells, nanomed and biotech, 46(1): 126-137.
70. Banala, N, Tirumalesh C, Suram, D. Dudhipala, N. Zotepine loaded lipid nanoparticles for oral delivery: preparation, characterization, and in vivo pharmacokinetic studies. Fut J Pharm Sci, 2020; 6(1): 37.
71. Dudhipala Narendar, and Ahmed Adel Ay. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chemistry and Physics of Lipids 232 (2020): 104953.
72. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1–2): 121–8.
73. Radtke M, Souto EB, Muller RH. Nanostructured lipid carriers: a novel generation of solid lipid drug carriers. Pharm Technol Eur 2005; 17(4): 45–50.
74. Ana Beloqui, María ÁngelesSolinís, AliciaRodríguez-Gascón, António J.Almeida, Véronique Préat. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomed, nanotech, bio and med, 2016; 12(1): 143-161.
75. Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Controlled Release 1997; 48(2–3): 223–36.
76. Ahmed AAY, Narendar D, Mujumdar S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics, 2020; 12(6): 572.
77. Garcia-Fuentes M, Torres D, Alonso MJ. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids Surf B 2003; 27: 159-68.
78. Sharma P, Ganta S, Denny AW, Garg S. Formulation and pharmacokinetics of lipid nanoparticles of a chemically sensitive nitrogen mustard derivative. Chlorambucil. Int J Pharm 2009; 367: 187-94.
79. Min Fang, Yilin Jin, Wei Bao, Hui Gao, Mengjin Xu, Di Wang, Xia Wang, Ping Yao, and Liegang Liu.In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int J Nanomedicine. 2012; 7: 5395-5404.
80. Mishra A, Imam SS, Aqil M, Ahad A, Sultana Y, Ameeduzzafar, Ali A. Carvedilol nano lipid carriers: formulation, characterization and in-vivo evaluation. Drug Deliv. 2016 May; 23(4): 1486-94.
81. Nirmal V. Shah, Avinash K. Seth, R. Balaraman, Chintan J. Aundhia, Rajesh A. Maheshwari, Ghanshyam R. Parmar. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. Journal of Advanced Research (2016); 7: 423–434.
82. Xuan Gao, Jun Zhang, Qiang Xu, Zun Huang, Yiyue Wang andQi Shen. Hyaluronic acid-coated cationic nanostructured lipid carriers for oral vincristine sulfate delivery. DDIP, 2017; 47(3): 661-667.
83. Mohammed Elmowafy, Hany M. Ibrahim, Mohammed A. Ahmed, Khaled Shalaby, Ayman Salama and Hossam Hefesha. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks. Drug deli, 2017; 24(1): 932-941.
84. Narendar, D., Karthik, Yadav, J., and Thirupathi, G. (2018). Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artificial cells, nanomed and biotech, Early online 11 April, doi.org/10.1080/21691401.2018.1465068.
85. Tirumalesh C, Suram, D.; Dudhipala, N.; Banala, N. Enhanced pharmacokinetic activity of Zotepine via nanostructured lipid carrier system in Wistar rats for oral application. Pharm. Nanotechnol. 2020; 8(2): 158-160.
86. Dudhipala, Narendar, Ahmed Adel Ali Youssef, and Nagaraj Banala. Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application. Chemistry and Physics of Lipids (2020): 104981.
87. Narendar D, Thirupathi G. Neuroprotective effect of ropinirole loaded lipid nanoparticles hydrogel for Parkinson’s disease: preparation, in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics, 2020; 12(5): 448.
88. Muller RH, Gohla S, Dingler A, Schneppe T. Wise D. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000. Large-scale production of solid-lipid nanoparticles (SLN) and nanosuspension (Dissocubes) pp. 359-375.
89. Paun J.S., Tank H.M. Nanosuspension: An Emerging Trend for Bioavailability Enhancement of Poorly Soluble Drugs. Asian J. Pharm. Tech. 2012; 2(4): 157-168.
90. Banala N, Peddapalli H, Dudhipala N, Chinnala KM. Transmucosal Delivery of Duloxetine Hydrochloride for Prolonged Release: Preparation, in vitro, ex vivo Characteri-zation and in vitro-ex vivo Correlation. International Journal of Pharmaceutical Sciences and Nanotechnology. 2018 Sep 30; 11(5): 4249-58.
91. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004; 3(9): 785-96.
92. Butreddy, A., Dudhipala, N., Janga, K.Y. et al. Lyophilization of Small-Molecule Injectables: an Industry Perspective on Formulation Development, Process Optimization, Scale-Up Challenges, and Drug Product Quality Attributes. AAPS PharmSciTech 21, 252 (2020). https://doi.org/10.1208/s12249-020-01787-w.
93. Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995; 125: 91–7.
94. Harshil M. Patel, Bhumi B. Patel, Chainesh N. Shah, Dhiren P. Shah. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs- A Review. Research J. Pharm. and Tech. 2016; 9(5): 625-632.
95. Karri V, Butreddy A, Narender R. Fabrication of Efavirenz Freeze Dried Nanocrystals: Formulation, Physicochemical Characterization, In Vitro and Ex Vivo Evaluation. Advanced Science, Engineering and Medicine. 2015; 7(5): 385-392.
96. Narendar D, Arjun N, Someshwar K, Rao YM. Quality by design approach for development and optimization of Quetiapine Fumarate effervescent floating matrix tablets for improved oral bioavailability. Journal of Pharmaceutical Investigation. 2016 Jun 1; 46(3): 253-63.
97. Grau MJ, Kayser O, Müller RH. Nanosuspensions of poorly soluble drugs--reproducibility of small-scale production. Int J Pharm. 2000 Mar 10; 196(2):155-9.
98. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006; 62(1):3-16.
99. Arun B, Arjun. N and Narendar D. Formulation and characterization of Liquid Crystalline Hydrogel of Agomelatin: In vitro and Ex vivo evaluation. J applied Pharm Sci., 2015; 5(9): 110-114.
100. Gao, Yan and Wang, Chao and Sun, Min and Wang, Xin and Yu, Aihua and Li, Aiguo and Zhai, Guangxi. (2012). In Vivo Evaluation of Curcumin Loaded Nanosuspensions by Oral Administration. Journal of biomedical nanotechnology. 8. 659-68.
101. Patel GV1, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. 2014; 40(1): 80-91.
102. Bhanu P. Sahu, Malay K. Das Formulation, optimization, and in vitro/in vivo evaluation of furosemide nanosuspension for enhancement of its oral bioavailability. J Nanopart Res (2014) 16: 2360.
103. Sahu BP1, Das MK. Preparation and in vitro/in vivo evaluation of felodipine nanosuspension. Eur J Drug Metab Pharmacokinet. 2014 Sep;39(3):183-93. doi: 10.1007/s13318-013-0158-5. Epub 2013 Nov 7.
104. Thota S, Afzal MS, Bomma R and Veerabrahma K. Development and in vivo evaluation of cefdinir nanosuspensions. Int J Pharm Sci nanotech, 2014; 7(3): 2553-2560.
105. Sawant KK1, Patel MH1, Patel K1. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro-in vivo evaluations. Drug Dev Ind Pharm. 2016; 42(5): 758-68.
106. Li X1, Yua H1, Zhang C1, Chen W1, Cheng W1, Chen X1, Ye X1. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension wif solubility enhancement. J Pharm Pharmacol. 2016; 68(8): 980-8.
107. K. Nagaraj, D. Narendar and V. Kishan. Development of olmesartan medoxomil optimized nanosuspension using the Box–Behnken design to improve oral bioavailability. Drug Dev Ind Pharm, 2017; 43(7): 1186-1196.
108. C.W. Pouton, Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification, Int. J. Pharm. 27 (2–3) (1985) 335–348.
109. Pattnaik Gurudutta, Parmar Jeetesh U, Ali M Sajid, Ansari M Tahir. Self-Emulsifying Drug Delivery Systems: An Attempt to Improve Oral Absorption of Poorly Soluble Drugs. Research J. Pharma. Dosage Forms and Tech. 2010; 2(3): 206-214.
110. Pramod S. Salve. Optimization of Variables for Solid Self Emulsifying Drug Delivery System for Insoluble Drug. Research J. Pharm. and Tech. 2011; 4(10): 1581-1587.
111. Driscoll, D.F., Nehne, J., Peterss, H., Franke, R., Bistrian, B.R., Niemann, W., 2002. The influence of medium-chain triglycerides on the stability of all-in-one formulations. Int. J. Pharm. 240: 1-10.
112. Cuiné, J.F., Charman, W.N., Pouton, C.W., Edwards, G.A., Porter, C.J.H., 2007. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in selfemulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm. Res. 24: 748–757.
113. G.A. Kossena, W.N. Charman, B.J. Boyd, C.J.H. Porter, Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug, J. Pharm. Sci. 94(2005): 481–492.
114. Vamshi Krishna M, Vijay Kumar B, Narendar Dudhipala. In-situ Intestinal Absorption and Pharmacokinetic Investigations of Carvedilol Loaded Supersaturated Self-Emulsifying Drug System. Pharm Nanotechnol. 2020 May 17. doi: 10.2174/ 2211738508666200517121637.
115. Porter, C.J.H., Pouton, C.W., Cuine, J.F., Charman, W.N., 2008. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev. 60: 673–691.
116. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003; 26(9): 768–72.
117. Larsen, A.T., Ogbonna, A., Abu-Rmaileh, R., Abrahamsson, B., Østergaard, J., Müllertz, A., 2012. SNEDDS containing poorly water soluble cinnarizine; development and In vitro characterization of dispersion, digestion and solubilization. Pharmaceutics 4: 641–665.
118. T. Iosio, D. Voinovich, B. Perissutti, F. Serdoz, D. Hasa, I. Grabnar, S. Dall’ Acquac, G.P. Zarad, E. Muntonid, J.F. Pintoe. Oral bioavailability of silymarin phytocomplex formulated as self-emulsifying pellets. Phytomedicine 18 (2011) 505–512.
119. Balakumar K, Raghavan CV, Selvan NT, prasad RH, Abdu S. Self-nanoemulsifying drug delivery system (SNEDDS) of rosuvastatin calcium: design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf B Biointerfaces. 2013; 112:337-43.
120. Jing Cuia, b, Bo Yuc, d, Yu Zhaoe, Weiwei Zhua, Houli Li a, Hongxiang Louf, Guangxi Zhaia. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. International Journal of Pharmaceutics 371 (2009) 148–155.
121. Anna Elgart, Irina Cherniakov, Yanir Aldouby, Abraham J. Domb, Amnon Hoffman. Improved Oral Bioavailability of BCS Class 2 Compounds by Self Nano-Emulsifying Drug Delivery Systems (SNEDDS): The Underlying Mechanisms for Amiodarone and Talinolol. Pharm Res (2013) 30: 3029–3044.