Author(s): Aakash Bairagi, Ashish Jain, Akhlesh K. Singhai

Email(s): aakashbairagi66@gmail.com

DOI: 10.52711/0975-4377.2024.00042   

Address: Aakash Bairagi, Ashish Jain, Akhlesh K. Singhai
School of Pharmacy, LNCT University, Bhopal.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2024


ABSTRACT:
Dissolving microneedles (DMN) are tiny needles designed for painless drug delivery through the skin, offering effective treatment with minimal discomfort. This innovative transdermal delivery method has sparked interest in various fields such as oligonucleotide, vaccine, and insulin delivery. With applications in disease management, immunobiology, and cosmetics, DMNs show great potential in the biomedical field. Wearable devices incorporating DMN patches could revolutionize disease management by combining diagnosis and treatment. Microneedles enhance drug delivery by creating microchannels in the skin, evolving from simple solid needles to hollow, coated, dissolving, and hydrogel-forming varieties. These advancements have expanded the scope of drug delivery to include ocular, oral mucosal, gastrointestinal, ungual, and vaginal administration. Microneedle-assisted drug delivery is expected to become widely applicable across various tissues and organs in the near future.


Cite this article:
Aakash Bairagi, Ashish Jain, Akhlesh K. Singhai. Dissolving Microneedles Drug Delivery System: A Comprehensive Review. Research Journal of Pharmaceutical Dosage Forms and Technology.2024; 16(3):268-4. doi: 10.52711/0975-4377.2024.00042

Cite(Electronic):
Aakash Bairagi, Ashish Jain, Akhlesh K. Singhai. Dissolving Microneedles Drug Delivery System: A Comprehensive Review. Research Journal of Pharmaceutical Dosage Forms and Technology.2024; 16(3):268-4. doi: 10.52711/0975-4377.2024.00042   Available on: https://rjpdft.com/AbstractView.aspx?PID=2024-16-3-11


REFERENCES:
1.    Yeu-Chun Kim, Jung-Hwan Park, Mark R, Prausnitz. Microneedles for drug and vaccine delivery.Adv Drug Deliv Rev. 2012; 64(14): 1547-1568.
2.    Shayan Fakhraei Lahiji, Youseong Kim, Geonwoo Kang Suyong Kim, Seunghee Lee, Hyungil Jung. Tissue Interlocking Dissolving Microneedles for Accurate and Efficient Transdermal Delivery of Biomolecules. J. Bio.Sci.  2019; 21(3): 211223.
3.    Shayan Fakhraei Lahiji, Youseong Kim, Geonwoo Kang, Suyong Kim, Seunghee Lee, Hyungil Jung. Tissue Interlocking Dissolving Microneedles for Accurate and Efcient Transdermal Delivery of Biomolecules. Scientific Reports. 2019; 9: 7886.
4.    Bariya, S.H., et al. Microneedles: an emerging transdermal drug delivery system. Journal of Pharmacy and Pharmacology. 2012; 64(1): 11-29.
5.    Serpe, L., et al. Influence of salivary washout on drug delivery to the oral cavity using coated Microneedles: An in vitro Evaluation. European Journal of Pharmaceutical Sciences. 2016; 93: 215-223.
6.    Traverso, G., et al., Microneedles for drug delivery via the gastrointestinal tract. Journal of Pharmaceutical Sciences. 2015. 104(2): 362-367.
7.    Chiu, W.S., et al. Drug delivery into microneedle-porated nails from nanoparticle reservoirs. Journal of Controlled Release. 2015; 220: 98-106.
8.    Thakur Singh, R.R., et al. Minimally invasive microneedles for ocular drug delivery. Expert Opinion on Drug Delivery, 2016: p. 1-13.
9.    MacGregor, R.R.; Graziani, A.L. Oral Administration of Antibiotics: A Rational Alternative to the Parenteral Route. Clin. Infect. Dis. 1997; 24: 457–467.
10.    Darji, M.A.; Lalge, R.M.; Marathe, S.P.; Mulay, T.D.; Fatima, T.; Alshammari, A.; Lee, H.K.; Repka, M.A.; Narasimha Murthy, S. Excipient Stability in Oral Solid Dosage Forms: A Review. AAPS Pharm Sci Tech. 2018; 19: 12–26.
11.    Davis, S.S.; Hardy, J.G.; Fara, J.W. Transit of Pharmaceutical Dosage Forms through the Small Intestine. Gut. 1986; 27: 886–892.
12.    Maderuelo, C.; Lanao, J.M.; Zarzuelo, A. Enteric Coating of Oral Solid Dosage Forms as a Tool to Improve Drug Bioavailability. Eur. J. Pharm. Sci. 2019; 138: 105019.
13.    Prausnitz, M.R. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin. Annu. Rev. Chem. Biomol.Eng. 2017; 8: 177–200.
14.    Li, W.-Z.; Huo, M.-R.; Zhou, J.-P.; Zhou, Y.-Q.; Hao, B.-H.; Liu, T.; Zhang, Y. Super-Short Solid Silicon Microneedles For Transdermal Drug Delivery Applications. Int. J. Pharm. 2010; 389: 122–129.
15.    Gupta, J.; Gill, H.S.; Andrews, S.N.; Prausnitz, M.R. Kinetics of Skin Resealing after Insertion of Microneedles In Human Subjects. J. Control. Release. 2011; 154: 148–155.
16.    Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle Arrays as Transdermal andIntradermal Drug Delivery Systems: Materials Science, Manufacture and Commercial Development. Mater. Sci. Eng. R Rep. 2016; 104: 1–32.
17.    Kalluri, H.; Banga, A.K. Formation and Closure of Microchannels in Skin Following Microporation. Pharm. Res. 2011: 28: 82–94.
18.    Donnelly, R.F.; Singh, T.R.R.; Alkilani, A.Z.; McCrudden, M.T.C.; O’Neill, S.; O’Mahony, C.; Armstrong, K.; McLoone, N.; Kole, P.; Woolfson, A.D. Hydrogel-Forming Microneedle Arrays Exhibit Antimicrobial Properties: Potential for Enhanced Patient Safety. Int. J. Pharm. 2013; 45: 76–91.
19.    Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and Nanofibers for Topical Drug Delivery. J. Control. Release. 2016: 240: 77–92.
20.    Li, S.; Li, W.; Prausnitz, M. Individually Coated Microneedles for Co-Delivery of Multiple Compounds with Different Properties. Drug Deliv. Transl. Res. 2018; 8: 1043–1052.
21.    Iliescu, F.; Dumitrescu-Ionescu, D.; Petrescu, M.; Iliescu, C. A Review on Transdermal Drug Delivery Using Microneedles: Current Research and Perspective. Ann. Acad. Rom. Sci. Series Sci. Technol. Inf. 2014; 7: 7–34.
22.    Koutsonanos, D.G.; del Pilar Martin, M.; Zarnitsyn, V.G.; Sullivan, S.P.; Compans, R.W.; Prausnitz, M.R.; Skountzou, I. Transdermal Influenza Immunization with Vaccine-Coated Microneedle Arrays. PLoS ONE. 2009; 4: e4773.
23.    Rodgers, A.M.; McCrudden, M.T.C.; Vincente-Perez, E.M.; Dubois, A.V.; Ingram, R.J.; Larrañeta, E.;Kissenpfennig, A.; Donnelly, R.F. Design and Characterisation of a Dissolving Microneedle Patch for Intradermal Vaccination with HeatInactivated Bacteria: A Proof of Concept Study. Int. J. Pharm. 2018; 549: 87–95.
24.    Lee, W.-J.; Han, M.-R.; Kim, J.-S.; Park, J.-H. A Tearable Dissolving Microneedle System for Shortening Application Time. Expert Opin. Drug Deliv. 2019; 16: 199–206.
25.    Bhatnagar, S.; Dave, K.; Venuganti, V.V.K. Microneedles in the Clinic. J. Control. Release. 2017;  260: 164–182.
26.    Martanto, W.; Moore, J.S.; Kashlan, O.; Kamath, R.; Wang, P.M.; O’Neal, J.M.; Prausnitz, M.R. Microinfusion Using Hollow Microneedles. Pharm. Res. 2006; 23: 104–113.
27.    Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z et al. Dissolving and biodegradable microneedle technologies For transdermal Sustained delivery of drug and vaccine. Drug Design, Development and Therapy. 2013; 7: 945.
28.    Sixing Yang, Yan Feng, Lijun Zhang, Nixiang Chen, Weien Yuan, Tuo Jin. A scalable fabrication process of Polymer Microneedles. Int J Nanomed. 2012; 7:1415-1422.
29.    Xiaoxiang He, Jingyao Sun, Jian Zhuang, Hong Xu, Ying Liu, Daming Wu. Microneedle System for Transdermal Drug And Vaccine Delivery: Devices, Safety, and Prospects, Dose-Response: Int. J Phar. 2019; l(3): 1-18.
30.    Jeong Woo Lee, Mee-Ree Han, Jung-Hwan Park. Polymer microneedles for transdermal drug delivery, Journal of Drug Targeting, 2013; 21(3): 211-223.
31.    Leo ne M, Monkare J, Bouwstra JA, Kersten G. Dissolving Microneedle Patches for Dermal Vaccination, Pharm Res. 2017; 17: 222.
32.    Chong In Shin, Seong Dong Jeong, Sanoj Rejinold N, Yeu-Chun Kim. Microneedles for vaccine delivery: challenges and Future perspectives, Ther. Deliv. 2017; 8(6): 447-460.
33.    Shayan Fakhraei Lahiji, Youseong Kim, Geonwoo Kang, Suyong Kim, Seunghee Lee, Hyungil Jung. Tissue Interlocking Dissolving Microneedles for Accurate and Efcient Transdermal Delivery of Biomolecules. Scientific Reports. 2019; 9: 7886.
34.    Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born Air blowing: Novel dissolving microneedle fabrication. Contrl. Rel. 2013; 170(3): 430-436.
35.    Sullivan SP, Koutsonanos DG, del Pilar Martin M. Dissolving polymer microneedle patches for influenza Vaccination. Nat Med. 2010; 16(8): 915-920.
36.    Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise Microinjection into skin using hollow microneedles. J InvestDermatol. 2006; 126(5): 1080-1087.
37.    Sivamani RK, Stoeber B, Liepmann D, Maibach HI. Microneedle penetration and injection past the stratum Corneum inHumans. Journal of Dermatological Treatment. 2009; 20: 156-9.
38.    Gittard SD, Chen B, Xu H, Ovsianikov A, Chichkov BN, Monteiro-Riviere NA et al. The effects of geometry on Skin Penetration and failure of polymer microneedles. Journal of Adhesion Science and Technology. 2013; 27(3): 227-243.
39.    Choi SO, Kim YC, Park JH, Hutcheson J, Gill HS, Yoon YK et al. An electrically active microneedle array for Electroporation. Biomed. Biomedical Microdevices. 2010; 12: 263-73.
40.    Patel, A.; Cholkar, K.; Mitra, A.K. Recent Developments in Protein and Peptide Parenteral Delivery Approaches. Ther.Deliv. 2014; 5: 337–365.
41.    Bull, S.P.; Hong, Y.; Khutoryanskiy, V.V.; Parker, J.K.; Faka, M.; Methven, L. Whey Protein Mouth Drying Influenced By Thermal Denaturation. Food Qual. Prefer. 2017; 56 (Pt B): 233–240.
42.    Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A Review on The Strategies for Oral Delivery of Proteins and Peptides and Their Clinical Perspectives. Saudi Pharm. J. 2016; 24: 413–428.
43.    Collin, M.; Milne, P. Langerhans Cell Origin and Regulation. Curr. Opin. Hematol. 2016: 23; 28–35.
44.    Van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle Technologies for (Trans) Dermal Drug and Vaccine Delivery. J. Control. Release. 2012; 161: 645–655.
45.    Du, G.; Hathout, R.M.; Nasr, M.; Nejadnik, M.R.; Tu, J.; Koning, R.I.; Koster,A.J.; Slütter, B.; Kros, A.; Jiskoot, W.; et al. Intradermal Vaccination with Hollow Microneedles: A Comparative Study Of Various Protein Antigen and Adjuvant Encapsulated Nanoparticles. J. Control. Release. 2017; 266: 109–118.
46.    McCrudden, M.T.C.; Torrisi, B.M.; Al-Zahrani, S.; McCrudden, C.M.; Zaric, M.; Scott, C.J.; Kissenpfennig, A.; McCarthy, H.O.; Donnelly, R.F. Laser-Engineered Dissolving Microneedle Arrays for Protein Delivery: Potential for Enhanced Intradermal Vaccination. J. Pharm. Pharmacol. 2015; 67: 409–425.
47.    Van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle Technologies for (Trans) Dermal Drug and Vaccine Delivery. J. Control. Release. 2012; 161: 645–655.
48.    Cheung, K.; West, G.; Das, D.B. Delivery of Large Molecular Protein Using Flat and Short Microneedles Prepared UsingFocused Ion Beam (FIB) as a Skin Ablation Tool. Drug Deliv. Transl. Res. 2015; 5: 462–467.
49.    Courtenay, A.J.; McCrudden, M.T.C.; McAvoy, K.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-Mediated Transdermal Delivery of Bevacizumab. Mol. Pharm. 2018; 15: 3545–3556.
50.    Chen, J.; Qiu, Y.; Zhang, S.; Gao, Y. Dissolving Microneedle-Based Intradermal Delivery of Interferon-α-2b Drug Dev. Ind. Pharm. 2016; 42: 890–896.
51.    Ie, X.; Pascual, C.; Lieu, C.; Oh, S.; Wang, J.; Zou, B.; Xie, J.; Li, Z.; Xie, J.; Yeomans, D.C.; et al. Analgesic MicroneedlePatch for Neuropathic Pain Therapy. ACS Nano. 2017; 11: 395–406.
52.    Resnik, D.; Možek, M.; Peˇcar, B.; Janež, A.; Urbanˇciˇc, V.; Iliescu, C.; Vrtaˇcnik, D. In Vivo Experimental Study Of Noninvasive Insulin Microinjection through Hollow Si Microneedle Array. Micromachines (Basel). 2018; 9: 40.
53.    Lee, I.-C.; Lin, W.-M.; Shu, J.-C.; Tsai, S.-W.; Chen, C.-H.; Tsai, M.-T. Formulation of Two-Layer Dissolving Polymeric Microneedle Patches for Insulin Transdermal Delivery in Diabetic Mice. J. Biomed. Mater. Res. A. 2017; 105: 84–93.
54.    Chen, M.-C.; Ling, M.-H.; Kusuma, S.J. Poly-γ-Glutamic Acid Microneedles with a Supporting Structure Design as aPotential Tool for Transdermal Delivery of Insulin. Acta Biomater. 2015; 24: 106–116.
55.    Dong, R.; Sun, S.; Liu, X.-Z.; Shen, Z.; Chen, G.; Zheng, S. Fat-Soluble Vitamin Deficiency in Pediatric Patients With Biliary Atresia. Gastroenterol. Res. Pract. 2017; 2017: 7496860.
56.    Godala, M.; Materek-Ku´smierkiewicz, I.; Moczulski, D.; Rutkowski, M.; Szatko, F.; Gaszy ´nska, E.; Tokarski, S.; The Risk of Plasma Vitamin A, C, E and D Deficiency in Patients with Metabolic Syndrome:A Case-Control Study.
57.    Okebukola, P.O.; Kansra, S.; Barrett, J. Vitamin E Supplementation in People with Cystic Fibrosis. Cochrane Database Syst. Rev. 2014; CD009422.
58.    Kim, H.-G.; Gater, D.L.; Kim, Y.-C. Development of Transdermal Vitamin D3 (VD3) Delivery System UsingCombinations of PLGA Nanoparticles and Microneedles. Drug Deliv. Transl. Res. 2018: 8: 281–290.
59.    Vora, L.K.; Donnelly, R.F.; Larrañeta, E.; González-Vázquez, P.; Thakur, R.R.S.; Vavia, P.R. Novel Bilayer Dissolving Microneedle Arrays with Concentrated PLGA Nano-Microparticles for Targeted Intradermal Delivery: Proof of Concept. J. Control. Release. 2017; 265: 93–101.
60.    Hutton, A.R.J.; Quinn, H.L.; McCague, P.J.; Jarrahian, C.; Rein-Weston, A.; Coffey, P.S.; Gerth-Guyette, E.; Zehrung, D.; Larrañeta, E.; Donnelly, R.F. Transdermal Delivery of Vitamin K Using Dissolving Microneedles For the Prevention Of Vitamin K Deficiency Bleeding. Int. J. Pharm. 2018; 541: 56–63.
61.    Ramöller, I.K.; Tekko, I.A.; McCarthy, H.O.; Donnelly, R.F. Rapidly Dissolving Bilayer Microneedle Arrays—A Minimally Invasive Transdermal Drug Delivery System for Vitamin B12. Int. J. Pharm. 2019; 566: 299–306.
62.    Risbud, M.V.; Bhonde, R.R. Polyacrylamide-Chitosan Hydrogels: In Vitro Biocompatibility and Sustained AntibioticRelease Studies. Drug Deliv. 2000; 7: 69–75.
63.    Risbud, M.V.; Bhonde, R.R. Polyacrylamide-Chitosan Hydrogels: In Vitro Biocompatibility and Sustained Antibiotic Release Studies. Drug Deliv. 2000; 7: 69–75.
64.    González-Vázquez, P.; Larrañeta, E.; McCrudden, M.T.C.; Jarrahian, C.; Rein-Weston, A.; Quintanar-Solares, M.; Zehrung, D.; McCarthy, H.; Courtenay, A.J.; Donnelly, R.F. Transdermal Delivery of Gentamicin Using Dissolving Microneedle Arrays for Potential Treatment of Neonatal Sepsis. J. Control. Release. 2017; 265: 30–40.
65.    Bose, S.; Kaur, A.; Sharma, S. A review on advances of sustained release drug delivery system. Int. Res. J.Pharm. 2013; 4: 1–5.
66.    Gao, X.; Patel, M.G.; Bakshi, P.; Sharma, D.; Banga, A.K. Enhancement in the Transdermal and Localized Delivery of Honokiol Through Breast Tissue. AAPS PharmSciTech. 2018; 19: 3501–3511.
67.    Puri, A.; Nguyen, H.X.; Banga, A.K. Microneedle-Mediated Intradermal Delivery of Epigallocatechin-3-Gallate. Int. J.Cosmet. Sci. 2016; 38: 512–523.
68.    Kochhar, J.S.; Tan, J.J.Y.; Kwang, Y.C.; Kang, L. Recent Trends in Microneedle Development & Applications in Medicine and Cosmetics (2013–2018). In Microneedles for Transdermal Drug Delivery; Kochhar, J.S., Tan, J.J.Y.,Kwang, Y.C., Kang, L., Eds.; Springer International Publishing: Cham, Germany. 2019; 95–144.
69.    Lee, C.; Eom, Y.A.; Yang, H.; Jang, M.; Jung, S.U.; Park, Y.O.; Lee, S.E.; Jung, H. Skin Barrier Restoration and Moisturization Using Horse Oil-Loaded Dissolving Microneedle Patches. Skin Pharmacol. Physiol. 2018; 31:163–171.
70.    Lulu An , Yuanyuan Wang, Jiaan Wu, Xiaoping Liu, Mei Liu, Siyue Kan, Yan Li, Yongyong Li , Jingwen Tan, Lianjuan Yang .Dissolving microneedle to improve transdermal delivery of terbinafine for treatment of onychomycosis. Journal of Drug Delivery Science and Technology. 2024;  95: 105537.
71.    Tomás Bauleth-Ramos, Nesma El-Sayed, Flavia Fontana, Maria Lobita, Mohammad-Ali Shahbazi , Hélder A.Santos.Recent approaches for enhancing the performance of dissolving microneedles in drug delivery applications. Science Direct. 2023; 63: 239-287.
72.    Tejashree Waghule, Gautam Singhvi, Sunil Kumar Dubey, Murali Monohar Pandey, Gaurav Gupta, Mahaveer Sing et al. Microneedles: A smart approach And increasing potential for Transdermal drug delivery System. Biomed & Pharmtherapy. 2019; 109:1249-1258.
73.    Mahadevan, G.; Sheardown, H.; Selvaganapathy, P. PDMS Embedded Microneedles as a Controlled Release System for The Eye. J. Biomater. Appl. 2013; 28: 20–27.
74.    Patel, S.R.; Berezovsky, D.E.; McCarey, B.E.; Zarnitsyn, V.; Edelhauser, H.F.; Prausnitz, M.R. Targeted Administration into the Suprachoroidal Space Using a Microneedle for Drug Delivery to the Posterior Segment of the Eye. Investig. Ophthalmol. Vis. Sci. 2012; 53: 4433–4441.
75.    Donnelly, R.F.; Singh, T.R.R.; Tunney, M.M.; Morrow, D.I.J.; McCarron, P.A.; O’Mahony, C.; Woolfson, A.D. Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro. Pharm. Res. 2009; 26: 2513–2522.

Recomonded Articles:

Author(s): Swapnil T. Deshpande, P. S. Vishwe, Rohit D. Shah, Swati S. Korabu, Bhakti R. Chorghe, DG Baheti

DOI:         Access: Open Access Read More

Author(s): Kritika Kanoujia, Chandraprabha Dewangan, Ayushi Masih, Dipti Sinha, Divya Oraon, Manisha Jaiswal, Monika Sahu, Ranjeeta Kumari, Sapna Pradhan, Ravi Suman, Rajkishan Dewangan, Roman Banjare, Pradeep Paikra, Mukesh Rawtiya, Mukta Agrawal, Ajazuddin, D. K. Tripathi, Amit Alexander

DOI: 10.5958/0975-4377.2018.00015.0         Access: Open Access Read More

Author(s): Varsha R. Sandhan, S.B. Gondkar, R. B. Saudagar

DOI:         Access: Open Access Read More

Author(s): K Sonu Sharma, Rashmi Sharma, G Vidya Sagar

DOI:         Access: Open Access Read More

Author(s): Saikumar Y., Saikishore V., Pavani K., Sairam D.T., Sindhura A.

DOI:         Access: Open Access Read More

Author(s): Masheer Ahmed Khan

DOI:         Access: Open Access Read More

Author(s): Alok Ranjan, Aishwarya Sahu, Akansha Yadav, Alka Payasi, Akash Jaiswal, Akshay Kumar, Akash Sahu, Ashwani Jangde, Chandrashekhar Nayak, Dev Kumar, Harshita Yarda, Mitali Sahu, Nokesh Sahu, Rajesh Patel, Nisha Nair, Mukta Agrawal, Ajazuddin, D. K. Tripathi, Amit Alexander

DOI: 10.5958/0975-4377.2018.00014.9         Access: Open Access Read More

Author(s): Nakkala Balaji , V. Sai Kishore , Kasani Hari Krishna Gouda

DOI:         Access: Open Access Read More

Author(s): Patel Chirag J., Asija Sangeeta, Patel Pinkesh, Mangukia Dhruv, Satyanand Tyagi

DOI:         Access: Open Access Read More

Author(s): P. Lekshmi, K. Pramod, K.C. Ajithkumar

DOI: 10.5958/0975-4377.2016.00007.0         Access: Open Access Read More

Author(s): Abhijit Chormale, Dharmendra Mundhada, Rajesh Mujoriya

DOI: 10.5958/0975-4377.2015.00026.9         Access: Open Access Read More

Author(s): T. V. Rao, K. Suma, K. Sahitya, A. Leelarani, A. Achireddy, P. Sreenubabu, N. Bhadramma

DOI: 10.5958/0975-4377.2018.00024.1         Access: Open Access Read More

Author(s): Deepak Khobragade, Sunil Kumar, Arun Kotha, Richa Gupta, K. Ravalika

DOI: 10.5958/0975-4377.2016.00024.0         Access: Open Access Read More

Author(s): Sachin N. Kothawade, Ashwini Ishware, Priyanka Darekar, Amit S. Lunkad

DOI:         Access: Open Access Read More

Author(s): Baladaniya Manoj, Vadgama Neha, Patel Priya

DOI:         Access: Open Access Read More

Author(s): Chinmaya Keshari Sahoo, Surepalli Rammohan Rao, Muvvala Sudhakar, D. Venkata Ramana, Kanhu Charan Panda

DOI: 10.5958/0975-4377.2017.00024.6         Access: Open Access Read More

Author(s): Priti Trivedi, Shailendra Bhatt

DOI:         Access: Open Access Read More

Author(s): Kiran R. Birajdar, Satish K. Mandlik

DOI: 10.5958/0975-4377.2017.00015.5         Access: Open Access Read More

Research Journal of Pharmaceutical Dosage Forms and Technology (RJPDFT) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. ...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0975-4377 


Recent Articles




Tags