Author(s):
Prashant Gupta, Dipti H. Patel, Nilesh Dhameliya, Pratik Modh, Vishvesh Joshi
Email(s):
guptaprash5@gmail.com
DOI:
10.52711/0975-4377.2023.00047
Address:
Prashant Gupta1*, Dipti H. Patel1, Nilesh Dhameliya2, Pratik Modh2, Vishvesh Joshi3
1Department of Pharmaceutics, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, P.O. Limda, Tal. Waghodia - 391760 Dist. Vadodara, Gujarat (India)
2Formulation and Development, Alembic Research Centre, Alembic Road, Subhanpura - 390003 Dist. Vadodara, Gujarat (India)
3Research and Development, Chartwell Pharmaceuticals LLC, 77 Brenner Dr, Congers, NY 10920, United States.
*Corresponding Author
Published In:
Volume - 15,
Issue - 4,
Year - 2023
ABSTRACT:
Dissolution (in vitro release) testing has been the subject of intense scientific and regulatory interest over the past several decades. As an analytical methodology, in vitro dissolution testing measures drug release into the dissolution media. The U. S. Food and Drug Administration (USFDA) Dissolution Database was reviewed and screened regarding the type of dosage forms, apparatus type, agitation speed, media volume, and recommended time points for the dissolution profile. The dissolution method requires special laboratory equipment, following a well-defined protocol. Basic information is available in the United States Pharmacopeia general chapters<711> Dissolution, <724> Drug Release, and <1092> The Dissolution Procedure – Development and Validation and these chapters were used as a starting point for this revision. The article describes current regulatory expectations for establishing a suitable dissolution method for implementing quality control tools, a way to maintain lot quality and consistency between development batches and post-approval commercial batches. Dissolution methods draw offers some advantages as a possible surrogate for extensive clinical studies in certain cases required after scale-up and post-approval changes in the product's life cycle and serves as an essential tool for establishing waivers for filing of lower strengths of the drug product. The step-by-step dissolution method development plan as per current regulatory perspectives and the factors to be considered are explained with examples. Scientist requires detailed insights on the selection of media and volumes, physicochemical properties of active substance, sink condition, type of enzymes, selection of apparatus, deaeration, sinkers, agitation speed, and time point’s measures. The advanced dissolution method is evaluated against its discriminatory power by intentionally varying formulation and process variables
Cite this article:
Prashant Gupta, Dipti H. Patel, Nilesh Dhameliya, Pratik Modh, Vishvesh Joshi. A Review on Dissolution Method Development for Drug Products: Current Regulations and Prospects. Research Journal of Pharmaceutical Dosage Forms and Technology2023; 15(4):293-2. doi: 10.52711/0975-4377.2023.00047
Cite(Electronic):
Prashant Gupta, Dipti H. Patel, Nilesh Dhameliya, Pratik Modh, Vishvesh Joshi. A Review on Dissolution Method Development for Drug Products: Current Regulations and Prospects. Research Journal of Pharmaceutical Dosage Forms and Technology2023; 15(4):293-2. doi: 10.52711/0975-4377.2023.00047 Available on: https://rjpdft.com/AbstractView.aspx?PID=2023-15-4-12
REFERENCES:
1. Sirisha, S; A Review on IVIVC in The Development of Oral Drug Formulation: Data Obtained from Past Two Decades. Res. J. Pharma. Dosage Forms and Tech. 2020; 12(3): 198-204. DOI: 10.5958/0975-4377.2020.00034.8.
2. Om, A.; Lawrence, X. Y.; Dale, P. C.; Barbara, M. D. Dissolution testing for generic drugs: An FDA perspective. AAPS J. 2011; 13 (3): 328-335.DOI: 10.1208/s12248-011-9272-y
3. Dissolution methods database. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_getallData.cfm (accessed on Feb 08, 2022).
4. The United States Pharmacopoeia. https://online.uspnf.com/uspnf (accessed on Feb 08, 2022)
5. United States pharmacopoeia and National Formulary USP-NF 2022, Chapter <1092>, The dissolution procedure: Development and validation. The United States Pharmacopoeial Convention, Rockville, MD, 2022.
6. Smith, J.; George, J.; Nadler, T.; Joshi, V.; Filters in dissolution testing: Evaluation and selection. Dissolution Technol. 2020; 27 (4): 6-13.DOI: dx.doi.org/10.14227/DT270420P6
7. Nadia, B.; Katherine, J. C. M.; Ivan, A. C. M.; Erika, S. S.; Filippos, K.; Mehran, Y.; Raimar, L. Evolution of choice of solubility and dissolution media after two decades of biopharmaceutical classification system. AAPS J. 2017; 19 (4): 989-1001.DOI: 10.1208/s12248-017-0085-5.
8. Sun, D.; Hu, M.; Browning, M.; Friedman, R. L.; Jiang, W.; Zhao, L.; Wen, H. Dissolution failure of solid oral drug products in field alert reports. J. Pharm. Sci. 2017; 106 (5): 1302-1309. DOI: https://doi.org/10.1016/j.xphs.2017.01.014
9. Mirza, T.; Joshi, Y.; Liu, Q.; Vivilechia, R.; Evaluation of Dissolution Hydrodynamics in the USP, Peak™ and Flat-Bottom Vessels Using Different Solubility Drugs. Dissolution Technol. 2005; 12 (1): 11-16.DOI:dx.doi.org/10.14227/DT120105P11.
10. Siew, A.; Understanding Dissolution Testing. Pharm. Tech. 2017; 41(6): 48-52.
11. Mann, J.; Cohen, M; Abend, A; Coutant, C.; Ashworth, L.; Shaw, R.;Reynolds, G.; Nir, I.; Shah, V.; Shaw, S.; Patel, A.; Lu, X.; Cicale, V.; Mccallum, M.; Patel S.; Topolski, J.; Prüfer, S.; Tomaszewska, I;Kourentas, A.; Mueller-Zsigmondy, A.; Williams, J.; Ainge, M.; Berben, P.; Bouquelle, A.; Abrahamsson, B.; Karlsson, A.; Varghese, R.; Li, F.; Orce, A.; Nickerson, B.; Shao X.; Stimuli to the Revision Process: The Case for Apex Vessels. Dissolution Technol. 2021; 28(4): 6-23. DOI: dx.doi.org/10.14227/DT280421P6
12. Kochling, J.; Approaches to the Investigation of Dissolution Testing Challenges and Failures. AAPS Webinar, 2013. https://pdfs.semanticscholar.org/302f/fe1dc8b7c598f55a0a1badb81ae05dfcba03.pdf (accessed on Feb 08, 2022)
13. Marques, M. R. C.; Enzymes in Dissolution Testing of Gelatin Capsules. AAPS Pharm Sci Tech. 2014; 15(6): 1410-1416.DOI: 10.1208/s12249-014-0162-3
14. Wang, Y.; Armenante, P. M.; A Novel Off-Center Paddle Impeller Dissolution Testing System for Reproducible Dissolution Testing of Solid Dosage Forms. J. Pharm. Sci. 2012; 101 (2): 746-760. DOI: https://doi.org/10.1002/jps.22783
15. Qureshi, S. A.; Shabnam, J.; Cause of high variability in drug dissolution testing and its impact on setting tolerances. Eur. J. Pharm. Sci. 2001; 12(3): 271-276. DOI: https://doi.org/10.1016/S0928- 0987(00)00174-3
16. Qureshi. S. A.; Comparative impact of stirring and shearing in drug dissolution testing with USP paddles and crescent shaped paddles. Dissolution Technol. 2006; 13: 25-30. DOI: dx.doi.org/10.14227/DT130106P25
17. Philips, D. J.; Pygall, S. R.; Cooper, V. B.; Mann, J. C. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J. Pharm. Pharmacol. 2012; 64(11): 1549-1559.DOI: 10.1111/j.2042-7158.2012.01523.x
18. Jawahar, N; Sureshkumar, R; Nagasamy Venkatesh, D; Ganesh, GNK; Jubie, S; Samanta, MK; Suresh, B; Polymorphism: A Dissolution Rate Enhancement Technique of Nitrendipine. Research J. Pharm. and Tech. 2008; 1(3): 285-286.
19. Patel, Harshil M.; Patel, Bhumi B.; Shah, Chainesh N.; Shah, Dhiren P.; Nanosuspension Technologies for Delivery of Poorly Soluble Drugs-A Review. Research J. Pharm. and Tech. 2016; 9(5): 625-632. DOI: 10.5958/0974-360X.2016.00120.7
20. Patel, Shachi R.; Shah, Dhiren P.; A Review on Nanocrystals Drug Delivery System. Research J. Pharm. and Tech. 2015; 8(5): 647-654. DOI: 10.5958/0974-360X.2015.00103.1.
21. Qureshi, S.; Drug dissolution testing: Selecting a dissolution medium for solid oral products. Am. Pharm. Rev. 2-5.
22. Friedel, H. D.; Brown, C. K.; Barker, A. R.; Buhse, L. F.; Keitel, S.; Kraemer, J.; Morris, J. M.; Reppas, C.; Sperry, D. C.; Sakai-Kato, K.; Stickelmeyer, M. P.; Shah, V. P.; FIP guidelines for dissolution testing of solid oral products. J. Pharm. Sci. 2018; 107 (12): 2995-3002. DOI: https://doi.org/10.1016/j.xphs.2018.08.007
23. Fotaki, N.; Brown, W.; Kochling, J.; Chokshi, H.; Miao, H.; Tang, K.; Gray, V.; Rationale for selection of dissolution media: Three case studies. Dissolution Technol. 2013; 20(3): 6- 13.DOI:10.14227/DT200313P16
24. Vakhariya, Rohan R.; Kumbhar, SM; Lade, RB; Salunkhe, PS; Ubale, RH; Dissolution Rate Enhancement of Ramipril by Solid Dispersion Technique. Asian J. Pharm. Res. 2020; 10(1): 08-12. DOI: 10.5958/2231-5691.2020.00002.7
25. Jadhav, Yogesh L.; Parashar, Bharat; Ostwal, Pankaj P.; Jain, Manu S.; Solid Dispersion: Solubility Enhancement for Poorly Water Soluble Drug. Research J. Pharm. and Tech. 2012; 5(2): 190-197.
26. Kumar, Gannu Praveen Kumar; Kumar Kiran S; Drug Dissolution Enhancement by Salt Formation: Current Prospects Res. J. Pharma. Dosage Forms and Tech. 2011; 3(6): 251-259.
27. Girishchandra, Mandake R.; Shinde, Shital S.; Patil, Omkar A.; Manojkumar, Nitalikar M.; Dissolution enhancement of Telmisartan by spray drying technique. Asian J. Res. Pharm. Sci. 2018; 8(4): 264-269. DOI: 10.5958/2231-5713.2018.00041.7.
28. Curley, T.; Forsyth, R.; Sun, S.; Fliszar, K.; Colletto, M.; Martin, G. P.; Measurement of Dissolved Oxygen as a Determination of Media Equilibrium During Dissolution Testing. Dissolution Technol. 2004;11 (4): 6-11.DOI:10.14227/DT110404P6
29. Gao, Z.; Moore, T. W.; Doub, W. H.; Westenberger, B. J.; Buhse, L. F.; Effects of Deaeration Methods on Dissolution Testing in Aqueous Media: A Study Using a Total Dissolved Gas Pressure Meter. J. Pharm. Sci. 2006; 95(7): 1606-1613.DOI:https://doi.org/10.1002/jps.20622
30. Degenhardt, O. S.; Waters, B.; Rebelo-Cameirao, A.; Meyer, A.; Brunner, H.; Toltl, N. P.; Comparison of the Effectiveness of Various Deaeration Techniques. Dissolution Technol. 2004; 11(1): 6-11.DOI:dx.doi.org/10.14227/DT110104P6
31. Soltero, R. A.; Hoover, J. M.; Jones, T. F.; Standish, M.; Effects of Sinker Shapes on Dissolution Profiles. J. Pharm. Sci. 1989; 78(1): 1-5. DOI : https://doi.org/10.1002/jps.2600780110
32. Wu, Y.; Zhao, F.; Paborji, M.; Effect of Fill Weight, Capsule Shell, and Sinker Design on the Dissolution Behavior of Capsule Formulations of a Weak Acid Drug Candidate BMS-309403. Pharm. Dev. Technol. 2003; 8(4): 379-383.DOI: https://doi.org/10.1081/pdt-120024691
33. Mansuroglu, Yaser; Dressman, Jennifer; Investigation of Dissolution Performance of Hard Gelatin Capsule Products Using Various Sinkers. Dissolution Technologies, 2020; 21-32. DOI : dx.doi.org/10.14227/DT270320P21.
34. Bhise, Sagar; Chaulang, Ganesh; Patel, Piyush; Patel, Bhavin; Bhosale, Ashok; Hardikar, Sharwaree; Superdisintegrants as Solubilizing Agent. Research J. Pharm. and Tech. 2009, 2(2), 387-391.
35. Reflection paper on the dissolution specification for generic solid oral immediate release products with systemic action; European Medicines Agency, Committee for Medicinal Products for Human use (CHMP), 30 Churchill Place, Canary Wharf, London E14 5EU, United Kingdom, 2017, 1-10.
36. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), U.S. Government Printing Office: Washington, DC, 1997. https://www.fda.gov/media/70936/download (accessed on Feb 08, 2022)
37. Piscitelli, D.; Young, D.; Setting Dissolution Specifications for Modified-Release Dosage Forms, in In Vitro-in Vivo Correlations. Adv. Exp. Med. Biol. 1997; 423: 159-166. DOI: https://doi.org/10.1007/978-1-4684-6036-0_13
38. Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations; U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), U.S. Government Printing Office: Washington, DC, 1997. https://www.fda.gov/media/70939/download (accessed on Feb 08, 2022).