Author(s):
Girijesh Kumar, Naveen Gupta, Neeraj Sharma, Dharmendra S. Rajput, Ankita Shukla
Email(s):
girijeshkumar005@gmail.com
DOI:
10.52711/0975-4377.2023.00024
Address:
Girijesh Kumar, Naveen Gupta, Neeraj Sharma, Dharmendra S. Rajput, Ankita Shukla
Patel College of Pharmacy, Madhyanchal Professional University, Ratibad - 462044, Bhopal, Madhya Pradesh.
*Corresponding Author
Published In:
Volume - 15,
Issue - 2,
Year - 2023
ABSTRACT:
Solid dispersion preliminary solubility analysis was carried out for the selection of the carrier and solid dispersion was prepared with Hydroxy Propyl Methyl Cellulose (HPMC) and Methyl Cellulose (MC). These solid dispersions were analyzed for the solubility and in-vitro dissolution profile solid dispersion of drug with polymer has shown enhanced solubility with improved dissolution rate. Further FTIR, X-Ray studies were carried out. The solubility and dissolution rate of Simvastatin, a drug used for the treatment of hyperlipidaemia. Simvastatin is a selective competitive inhibitor of HMG Co-A reductase. However its absolute bioavailability is 5%. To increase the solubility of drug solid dispersion was prepared. Solid dispersion prepared with polymer in 1:5 ratios shows the presence of amorphous form confirmed by the characterization study. The present investigations showed that solubility of Simvastatin Sodium was markedly increased by its solid dispersion using PVP K30 as carrier. The formulation SDF8 containing (1:8) shows highest dissolution rate. Hence the solid dispersion a way is useful technique in providing fastest onset of action of Simvastatin Sodium as well as enhanced dissolution rate. The study also shows that dissolution rate of Simvastatin can be enhanced to considerable extent by solid dispersion technique with Polymer.
Cite this article:
Girijesh Kumar, Naveen Gupta, Neeraj Sharma, Dharmendra S. Rajput, Ankita Shukla. Formulation for Enhancement of Solubility and Dissolution Rate of Simvastatin using Solid Dispersion. Research Journal of Pharmaceutical Dosage Forms and Technology.2023; 15(2):143-8. doi: 10.52711/0975-4377.2023.00024
Cite(Electronic):
Girijesh Kumar, Naveen Gupta, Neeraj Sharma, Dharmendra S. Rajput, Ankita Shukla. Formulation for Enhancement of Solubility and Dissolution Rate of Simvastatin using Solid Dispersion. Research Journal of Pharmaceutical Dosage Forms and Technology.2023; 15(2):143-8. doi: 10.52711/0975-4377.2023.00024 Available on: https://rjpdft.com/AbstractView.aspx?PID=2023-15-2-12
REFERENCES:
1. Ahuja Naveen, Katare Om Prakash, and Singh Bhupinder (2006). Studies on dissolution enhacement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers, Int. J. Pharm 44-54.
2. Charbit G., Badens E., Boutin O. (2004). Supercritical Fluid Technology for Drug Product Development, Drugs and Pharmaceutical Sciences, vol. 138, Marcel Dekker Inc., New York.
3. Chiou W., Riegelman S. (1969). Preparation and Dissolution Characteristics of Several Fast Release Solid Dispersion of Griseofulvin. J. Pharm. Sci. 58; 1505.
4. Chokshi, R., and Hossein, Z., 2004. Hot Melt Extrusion Technique: A Review. Int. J. Pharmaceut. Res., 3: 3-16.
5. Constantinides P.P. (1995). Lipid micro-emulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects, Pharm. Res. 12; 1561 1572.
6. Jung J., Perrut M. (2001). Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids 20; 179 219.
7. Kakumanu V. K., Bansal A. K. (2004). Supercritical Fluid Technology in Pharmaceutical Research. Businessbriefing: Labtech, 70 72.
8. Kaushal, A.M, Guptam P., and Bansal, AK., 2004.Amorphous drug delivery systems: molecular aspects, design, and performance. Crit. Rev. There. Drug Carrier Syst., 21(3): 133-193.
9. Leuner C., Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000; 50(1): 47 60.
10. Majerik V., Horvath G., Charbit G., Badens E., Szokonya L., Bosc N., Teillaud E. (2004). Novel particle engineering techniques in drug delivery: review of formulations using supercritical fluids and liquefied gases, Hun. J. Ind. Chem. 32; 41 56
11. Mayersohn M., Gibaldi M. New method of solid state dispersion for increasing dissolution rates. J Pharm Sci. 1966; 55: 1323-1342.
12. Narang, A., and Shrivastava, A., 2002. Melt extrusion solid dispersion technique. Drug Dev. Ind. Pharm., 26(8): 111-115.
13. Perissutti, B., Newton, J.M., Podezeck, F., and Rubessa, F., 2002. Preparation of extruded Carbamazepine and PEG 4000 as a potential rapid release dosage form. Europ. J. Pharmaceut. Biopharmaceut., 53: 125-132.
14. Pikal, M.J., Lukes, A.L., Lang, J.E., and Gaines, K., 1978. Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability. J. Pharmaceut. Sci., 67(6): 767-73.
15. Rogers T.L., Johnston K.P., Williams R.O. III (2001). Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies, Drug Dev. Ind. Pharm. 27 (10); 1003 1015.
16. Serajuddin, A.T.M. (1999). Solid dispersion of poorly water-soluble drugs: earlypromises, subsequent problems and recent breakthroughs. J. Pharm. Sci. 88; 1058 1066.
17. Serajuddin, A.T.M., Sheen P.C., Mufson D., Bernstein D.F., Augustine M.A. (1988a). Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J. Pharm. Sci. 77; 414 417.
18. Shah N.H., Carvajal M.T., Patel C.I., Infeld M.H., Malick A.W. (1994). Self- emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm. 106; 15 23.
19. Tachibani T., Nakamura A. A method for preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of beta-carotene by polyvinylpyrrolidone. Colloid & Polymer Science. 1965; 203(2):130-133.
20. Taylor L.S., Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997 14(12): 1691-1698.
21. Taylor, L.S., and Zografi, G., 1997. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharmaceut. Res., 14: 1691-1698.