ABSTRACT:
Single and multiple walled carbon nanotubes have already serve as safer and more effective alternatives to previous drug delivery methods. They can pass through membranes, carrying therapeutic drugs, vaccines, and nucleic acids deep into the cell to targets previously unreachable. They also serve as ideal non-toxic vehicles which increase the solubility of the attached drug in some cases, resulting in greater efficacy and safety. Overall, recent CNT studies have shown a very promising glimpse of what lies ahead in the medicines. Anticancer drug methotrexate via the release mechanism of enzymatic cleavage in in-vitro breast cells with the aid of multiwalled carbon nanotubes. Likewise, multiwalled carbon nanotubes modified by dendrimer have been used for the delivery of the drug doxorubicin. Multiwalled carbon nanotubes are ideal carriers of peptides, proteins and genes because these macromolecules are quickly destroyed by the enzymes present on the inside of the cell surface. Established carrier cationic multiwalled carbon nanotubes-NH3þ used to deliver the apoptotic siRNA against polo-like kinase (siPLK1) in calu6 tumor xenografts by direct intertumoral injections.
Cite this article:
Akshay R. Yadav, Shrinivas K. Mohite. Carbon Nanotubes as an effective Solution for Cancer Therapy. Res. J. Pharma. Dosage Forms and Tech.2020; 12(4):301-307. doi: 10.5958/0975-4377.2020.00050.6
Cite(Electronic):
Akshay R. Yadav, Shrinivas K. Mohite. Carbon Nanotubes as an effective Solution for Cancer Therapy. Res. J. Pharma. Dosage Forms and Tech.2020; 12(4):301-307. doi: 10.5958/0975-4377.2020.00050.6 Available on: https://rjpdft.com/AbstractView.aspx?PID=2020-12-4-12
REFERENCES:
1. Iijima S. Helical Microtubules graphite carbon. Nature. 1991; 354: 56–58.
2. Zhang S, Yang K, Liu Z. Carbon nanotubes for in vivo cancer nanotechnology. Sci. 2010; 53(11): 2217-2225.
3. Kam, N.W.S., Jessop, T.C., Wender, P.A. & Dai, H.J. Nanotube moleculartransporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004; 12: 6850–6851.
4. Liu, Z., Winters, M., Holodniy, M. & Dai, H.J. RNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. Engl. 2007; 46: 2023–2027.
5. Kam, N.W.S., Liu, Z.A. & Dai, H.J. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 2006; 2206; 45: 577–581.
6. Kam, N.W.S., Liu, Z. & Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005; 127:12492–12493.
7. Kam, N.W.S. & Dai, H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 2005; 127: 6021–6026.
8. Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009; 2: 85–120.
9. Sayes, C.M. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett. 2006; 161: 135–142.
10. In-Yup Jeon, Dong Wook Chang, Nanjundan Ashok Kumar and Jong-Beom Baek. Functionalization of carbon nanotubes, carbon nanotubes - polymer nanocomposites, Dr. Siva Yellampalli (Ed.), ISBN: 978-953.
11. Singh K, Rana M, Durgapal, et al. Comprehensive update on carbon nanotubes and their significances in the field of pharmaceutics. Adv Tissue Eng Regen Med Open Access. 2016; 1(3): 78‒87.
12. Sebastien W, Giorgia W, Monica P, et al. Targeted delivery of amphotericin b to cells by using functionalized carbon nanotubes. Angew and te Chemie. 2005; 117: 6516–6520.
13. Barroug A, Glimcher M. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res. 2002; 20(2): 274–280.
14. Ajima K, Yudasaka M, Murakami T, et al. Carbon nanohorns as anticancer drug carriers. Mol Pharm. 2005; 2(6): 475–480.
15. Pai P, Nair K, Jamade S. Pharmaceutical applications of carbon tubes and nanohorns. Cur Pharm res J. 2006; 1: 11–15.
16. Pantarotto D, Partidos C, Hoebeke J. Immunization with peptide functionalized carbon Nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003; 10(10): 961–966.
17. Bianco et al.71[18. Nanotsunami. Carbon nanotubesas multifunctional biological transporters and near infrared agentsfor selective cancer cell destruction. Proc Natl Acad Sci USA. 2005; 102(33): 11600–11605.
18. Deng P, Xu Z, Li J. Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method basedon multi-walled carbon nanotubes-chitosan composite film modified electrode. J Pharm Biomed Anal. 2013; 76: 234–242.
19. Kuznetsova A, Mawhinney D. Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett. 2000; 321: 292–296.
20. Ghasemvand F, Biazar E, Tavakolifard S. Synthesis and valuation of multi-wall carbon nanotube paclitaxel complexas an anti-cancer agent. Int J Poly mat. 2014; 63: 898–908.
21. Baradaran A, Biazar E, Heidarikeshel S. Cellular response of limbal stem cells on polycaprolactone nanofibrous scaffolds for ocularepithelial regeneration. Curr Eye Res. 2014; 41(3): 326–333.
22. Biazar E, Tavakolifard S. Modification of carbon nanotubes as an effective solution for cancer therapy. Nano Biomed Eng. 2016;8(3):144–160]
23. Prabhakar R Bandaru. Electrical Properties and Applications of CarbonNanotube Structures. J Nanosci Nanotechnol. 2007; 7(5): 1–29.
24. Yang G, Zhao F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes molecularly imprinted polymer. Biosens Bioelectron. 2015; 64(190): 416–422.
25. Ryu S, Lee P, Chou JB, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano. 2015; 9(6): 5929–5936.
26. Ansari R, Ajori S, Ameri A. Stability characteristics and structural properties of single and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations. App Surface Sci. 2016; 366: 233–244.
27. Iijima, S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993; 363: 603-605.
28. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, Biochem Biophys Acta 2006; 1758: 404-412.
29. Danailov D, Keblinski P, Nayak S, Ajayan PM. Bending properties of carbon nanotubes encapsulating solid nanowires, J Nano Sci Nanotechnol. 2002; 2: 503-507.
30. Zhang B, Chen Q, Tang H, Xie Q, Ma M, Tan L. Characterization and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B Biointerfaces. 2010; 80: 18-25.
31. Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S. Safe clinical use of carbon nanotubes as innovative biomaterials Chem Rev 2014; 114(11): 6040-6079.
32. Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells, J Drug Delivery. 2014; 23: 228-229.
33. Xia ZH, Guduru PR, Curtin WA. Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging, Phy Rev Lett. 2007; 98: 245501-245504.
34. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011; 6(1): 2963-2979.
35. Uc-Cayetano EG, Aviles F, Cauich-Rodriguez JV, Schonfelder R, Bachmatiuk A, Rummeli MH. Influence of nanotube physicochemical properties on the decoration of multiwall carbon nanotubes with magnetic particles. J Nanoparticle Res. 2014; 16: 2192-2198.
36. Singh K, Rana M, Durgapal. Comprehensive update on carbon nanotubes and their significances in the field of pharmaceutics. Adv Tissue Eng Regen Med Open Access. 2016; 1(3): 78‒87.
37. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008; 41: 60–68.
38. Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc. 2009; 4: 1372–1382.
39. Rosca ID, Watari F, Uo M, Akaska T. Oxidation of multiwalled carbonnanotubes by nitric acid. Carbon. 2005; 43: 3124–3131.
40. Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano. 2007; 1: 50–56.
41. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nano vectors for the delivery of therapeutics. BiochEm Biophys Acta. 2006; 1758: 404–412.
42. Bekyarova E, Ni Y, Malarkey EB, et al. Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol. 2005; 1: 3–17.
43. Kam NW, O’Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancercell destruction. Proc Natl Acad Sci. 2005; 102: 11600–11605.
44. Liu Z, Sun X, Nakayama-Ratchford N, Dai H. Supramolecular chemistryon water-soluble carbon nanotubes for drug loading and delivery. ACSNano. 2007;1: 50–56.
45. Niyogi S, Hamon MA, Hu H. Chemistry of single-walled carbon nanotubes. Acc Chem Res. 2002; 35: 1105–1113.
46. Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc. 2009; 4: 1372–1382.
47. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine, Int J Nanomedicine, 2017; (12): 2957–2978.
48. Dekker C. Carbon Nanotubes as Molecular Quantum Wires. Physics Today, 1999; 52(2): 22-28.
49. Akyildiz I, Tommaso M, Chowdury K. Wireless multimedia sensor networks: A survey. Wireless Communications. IEEE 2007; 14.6: 32-39.
50. Shun-rong J, Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta -2010; 1806: 29-35.
51. Hong H, Gao T. Molecular imaging with singlewalledcarbon nanotubes, Nano Today. 2009. 4: 252–261.
52. Yang, Wenrong. Carbon nanotubes for biological and biomedical applications. Nanotechnol. 2007; 18.41: 412-418.
53. H. Hong, T. Gao, W.B. Cai, Molecular imaging with single walled carbon nanotubes, Nano. 2009; 252–261.
54. Akyildiz I, Tommaso M, Chowdury K. Wireless multimedia sensor networks: A survey. Wireless Communications. IEEE. 2007; 14.6: 32-39.
55. Zhang, Yi, Yuhong Bai, and Bing Yan. "Functionalized carbon nanotubes for potential medicinal applications. Drug discovery today. 2010; 15.11: 428-435.
56. Yang D, Yang F, Hu JH, Long J, Wang C, Fu D, Nib Q: Hydrophilic multiwalled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicle. Chem Commun 2009; 29: 4447-4449.
57. Ji S, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu D, NiQ, Yu X. Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta. 2010; 1806: 29-35.
58. Yang D, Yang F, Hu JH, Long J, Wang C, Fu D, Nib Q: Hydrophilic multiwalled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicle. Chem Commun 2009, 29: 4447-4449.