Author(s): Sirisha. S


DOI: 10.5958/0975-4377.2020.00032.4   

Address: Sirisha. S
Dept. of Pharmaceutics, Sree Venkateswara University of Pharmaceutical Sciences, Tirupati-517 102, Chittoor (Dist.), A.P., India.
*Corresponding Author

Published In:   Volume - 12,      Issue - 3,     Year - 2020

Problems associated with the administration of anticancer drugs, such as limited solubility, poor biodistribution, lack of selectivity, and healthy tissue damage, can be overcome by the implementation of Smart Drug Delivery Systems (SDDSs). Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the secondly leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, den-drimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparti-cles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness.

Cite this article:
Sirisha. S. A Review on Delivery of Anti- Cancer Drugs by Smart Nanocarriers: Data Obtained from Past One Decade. Res. J. Pharma. Dosage Forms and Tech.2020; 12(3):185-190. doi: 10.5958/0975-4377.2020.00032.4

Sirisha. S. A Review on Delivery of Anti- Cancer Drugs by Smart Nanocarriers: Data Obtained from Past One Decade. Res. J. Pharma. Dosage Forms and Tech.2020; 12(3):185-190. doi: 10.5958/0975-4377.2020.00032.4   Available on:

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin2015; 65:5–29.
2. American Cancer Society. Cancer facts and figures 2017. Genes Dev 2017; 21:2525–38.
3. Chabner BA, Roberts TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer2005; 5:65–72.
4. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68:8643–53.
5. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6:555.
6. Ahmad SS, Reinius MA, Hatcher HM, Ajithkumar TV. Anticancer chemotherapy in teenagers and young adults: managing long term side effects. BMJ 2016; 354: i4567.
7. Gillet J, Gottesman MM. In: Multi-drug resistance in cancer. TotowaNJ: Humana Press; 2010.
8. Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to Pgp. Cancer Cell Int 2015; 15:71.
9. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract 1996; 192:768–80.
10. Gupta PK. Drug targeting in cancer chemotherapy: a clinical perspective. J Pharm Sci 1990; 79:949–62
11. Kreyling WG, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. Nano Today 2010; 5:165–8.
12. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2:751–60.
13. Lee BK, Yun YH, Park K. Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 2015; 125:158–64.
14. Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6:1306–23.
15. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977; 252:3582–6.
16. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42:46378.
17. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53:283–318.
18. Knop K, Hoogenboom R, Fischer D, Schubert U. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chemie Int Ed 2010; 49:6288–308.
19. Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res 2013; 3:499–503.
20. Xu H, Li Z, Si J. Nanocarriers in gene therapy: a review. J Biomed Nanotechnol 2014; 10:3483–507.
21. Qi S-S, Sun J-H, Yu H-H, Yu S-Q. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 2017; 24:1909–26.
22. Kang L, Gao Z, Huang W, Jin M, Wang Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 2015; 5:169–75.
23. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052–63.
24. Srinivasan M, Rajabi M, Mousa S. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials 2015; 5:1690–703.
25. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res 2017; 13:81–7.
26. Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 1965; 13:253–9.
27. Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973; 36:292–6.
28. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8:102.
29. Sharma A. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997; 154:123–40.
30. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci 2014; 9:176–82.
31. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep 2016; 6:25876.
32. Bangham AD. Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 1978; 308:2–7.
33. Deamer DW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 1978; 308:250–8.
34. Zumbuehl O, Weder HG. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. BBA 1981; 640:252–62.
35. Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 1978; 75:4194–8.
36. Otake K, Shimomura T, Goto T, Imura T, Furuya T, Yoda S, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22:2543–50.
37. Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids 2011; 57:162–74.
38. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed 2015; 10:975.
39. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9: e1450.
40. Huang SL, MacDonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta –Biomembr 2004; 1665:134–41.
41. Jin Y, Liang X, An Y, Dai Z. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer. Bioconjug Chem 2016; 27:2931–42.
42. Ogihara-Umeda I, Sasaki T, Kojima S, Nishigori H. Optimal radiolabeled liposomes for tumor imaging. J Nucl Med 1996; 37:326–32.
43. Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012; 64:1417–35.
44. Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, nearinfrared fluorescent, and nuclear imaging. Bioconjug Chem 2012; 23:1322–32.
45. Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 2013; 10:151–5.
46. Samson AAS, Park S, Kim S-Y, Min D-H, Jeon NL, Song JM. Liposomal codelivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res 2018:1–9.
47. Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug codelivery systems in cancer cells. Mater Sci Eng C 2017; 71:1327–41.
48. Shin DH, Tam YT, Kwon GS. Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng 2016; 10:348–59.
49. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 2017; 113:211–28.
50. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 2010; 5:485–505.
51. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47:113–31
52. Chen Y, Liu Y, Yao Y, Zhang S, Gu Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org Biomol Chem 2017; 15:3232–8.
53. Tang L-Y, Wang Y-C, Li Y, Du J-Z, Wang J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjug Chem 2009; 20:1095–9.
54. Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules 2014; 15:4281–92.
55. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007; 24:1029–46.
56. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65:259–69.
57. Liu J, Xiao Y, Allen C. Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci 2004; 93:132–43.
58. Kohori F, Yokoyama M, Sakai K, Okano T. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release 2002; 78:155–63.
59. Husseini Ga, Runyan CM, Pitt WG. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer 2002; 2:20.
60. Seo S-J, Lee S-Y, Choi S-J, Kim H-W. Tumor-targeting co-delivery of drug and gene from temperature-triggered micelles. Macromol Biosci 2015; 15:1198–204.
61. Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 2009; 234:123–31.
62. Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. JNCI J Natl Cancer Inst 2007; 99:1095–106.
63. Palmerston Mendes L, Pan J, Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22:1401.
64. Jackson CL, Chanzy HD, Booy FP, Drake BJ, Tomalia DA, Bauer BJ, et al. Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules 1998; 31:625965.
65. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009.
66. Majoros IJ, Williams CR, Tomalia DA, Baker JR. New dendrimers: synthesis and characterization of POPAM-PAMAM hybrid dendrimers. Macromolecules 2008; 41:8372–9.
67. Caminade A-M. Phosphorus dendrimers for nanomedicine. Chem Commun 2017; 53:98308.
68. Richardt G, Werner N, Fritz V. In: Types of dendrimers and their syntheses. Dendrimer chem. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. p. 81–167.
69. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J 1985; 17:117–32.
70. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112:7638–47.
71. Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2016; 4:375–90.
72. Ramireddy R, Raghupathi KR, Torres DA, Thayumanavan S. Stimuli sensitive amphiphilic dendrimers. New J Chem 2012; 36:340.
73. Jeffreys AJ, Wilson V, Thein SL. Individual-specific ‘‘fingerprints” of human DNA. Nature 15; 316:76–9.
74. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60: a new form of carbon. Nature 1990; 347:354–8.
75. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today 2011; 14:316–23.
76. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354:56–8.
77. Li Z, de Barros ALB, Soares DCF, Moss SN, Alisaraie L. Functionalized singlewalled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm 2017; 524:41–54.
78. Lay CL, Liu J, Liu Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices 2011; 8:561–6.
79. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58:1655–70.
80. Wang JT, Al-Jamal KT. Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine 2015; 10:2639–42.
81. Kafa H, Wang JT-W, Rubio N, Venner K, Anderson G, Pach E, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53:437–52.
82. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 2016; 11:5163–85.
83. Seifalian A. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 2011; 6:2963.
84.   Chen Z, Zhang A, Wang X, Zhu J, Fan Y, Yu H, et al. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J Nanomater 2017; 2017:1–13.

Recomonded Articles:

Author(s): Swapnil T. Deshpande, P. S. Vishwe, Rohit D. Shah, Swati S. Korabu, Bhakti R. Chorghe, DG Baheti

DOI:         Access: Open Access Read More

Author(s): Debarupa Dutta, Prithviraj Chakraborty

DOI:         Access: Open Access Read More

Author(s): Kritika Kanoujia, Chandraprabha Dewangan, Ayushi Masih, Dipti Sinha, Divya Oraon, Manisha Jaiswal, Monika Sahu, Ranjeeta Kumari, Sapna Pradhan, Ravi Suman, Rajkishan Dewangan, Roman Banjare, Pradeep Paikra, Mukesh Rawtiya, Mukta Agrawal, Ajazuddin, D. K. Tripathi, Amit Alexander

DOI: 10.5958/0975-4377.2018.00015.0         Access: Open Access Read More

Author(s): Varsha R. Sandhan, S.B. Gondkar, R. B. Saudagar

DOI:         Access: Open Access Read More

Author(s): Debjit Bhowmik, Amrendra Singh , Praveen Khirwadkar, Nishi Shukla, Vikas Kumar Chaudhari

DOI: 10.5958/0975-4377.2016.00027.6         Access: Open Access Read More

Author(s): Saikumar Y., Saikishore V., Pavani K., Sairam D.T., Sindhura A.

DOI:         Access: Open Access Read More

Author(s): K Sonu Sharma, Rashmi Sharma, G Vidya Sagar

DOI:         Access: Open Access Read More

Author(s): Masheer Ahmed Khan

DOI:         Access: Open Access Read More

Author(s): Patel Chirag J., Asija Sangeeta, Patel Pinkesh, Mangukia Dhruv, Satyanand Tyagi

DOI:         Access: Open Access Read More

Author(s): P. Lekshmi, K. Pramod, K.C. Ajithkumar

DOI: 10.5958/0975-4377.2016.00007.0         Access: Open Access Read More

Author(s): Suraj R. Wasankar, Kshitij V. Makeshwar, Abhishek D. Deshmukh, Rahul M. Burghate

DOI:         Access: Open Access Read More

Author(s): Nakkala Balaji , V. Sai Kishore , Kasani Hari Krishna Gouda

DOI:         Access: Open Access Read More

Author(s): Abhijit Chormale, Dharmendra Mundhada, Rajesh Mujoriya

DOI: 10.5958/0975-4377.2015.00026.9         Access: Open Access Read More

Author(s): Deepak Khobragade, Sunil Kumar, Arun Kotha, Richa Gupta, K. Ravalika

DOI: 10.5958/0975-4377.2016.00024.0         Access: Open Access Read More

Author(s): T. V. Rao, K. Suma, K. Sahitya, A. Leelarani, A. Achireddy, P. Sreenubabu, N. Bhadramma

DOI: 10.5958/0975-4377.2018.00024.1         Access: Open Access Read More

Author(s): Sachin N. Kothawade, Ashwini Ishware, Priyanka Darekar, Amit S. Lunkad

DOI:         Access: Open Access Read More

Author(s): Selvaraju K., Vengadesh Prabhu K., Karthick K., Padma Preetha J., Arul Kumaran K.S.G.

DOI:         Access: Open Access Read More

Author(s): Priti Trivedi, Shailendra Bhatt

DOI:         Access: Open Access Read More

Research Journal of Pharmaceutical Dosage Forms and Technology (RJPDFT) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. ...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/0975-4377 

Recent Articles