REFERENCES:
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin2015; 65:5–29.
2. American Cancer Society. Cancer facts and figures 2017. Genes Dev 2017; 21:2525–38.
3. Chabner BA, Roberts TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer2005; 5:65–72.
4. DeVita VT, Chu E. A history of cancer chemotherapy. Cancer Res 2008; 68:8643–53.
5. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett 2011; 6:555.
6. Ahmad SS, Reinius MA, Hatcher HM, Ajithkumar TV. Anticancer chemotherapy in teenagers and young adults: managing long term side effects. BMJ 2016; 354: i4567.
7. Gillet J, Gottesman MM. In: Multi-drug resistance in cancer. TotowaNJ: Humana Press; 2010.
8. Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to Pgp. Cancer Cell Int 2015; 15:71.
9. Nooter K, Stoter G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol Res Pract 1996; 192:768–80.
10. Gupta PK. Drug targeting in cancer chemotherapy: a clinical perspective. J Pharm Sci 1990; 79:949–62
11. Kreyling WG, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. Nano Today 2010; 5:165–8.
12. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2:751–60.
13. Lee BK, Yun YH, Park K. Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 2015; 125:158–64.
14. Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6:1306–23.
15. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 1977; 252:3582–6.
16. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42:46378.
17. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53:283–318.
18. Knop K, Hoogenboom R, Fischer D, Schubert U. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chemie Int Ed 2010; 49:6288–308.
19. Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res 2013; 3:499–503.
20. Xu H, Li Z, Si J. Nanocarriers in gene therapy: a review. J Biomed Nanotechnol 2014; 10:3483–507.
21. Qi S-S, Sun J-H, Yu H-H, Yu S-Q. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 2017; 24:1909–26.
22. Kang L, Gao Z, Huang W, Jin M, Wang Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 2015; 5:169–75.
23. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62:1052–63.
24. Srinivasan M, Rajabi M, Mousa S. Multifunctional nanomaterials and their applications in drug delivery and cancer therapy. Nanomaterials 2015; 5:1690–703.
25. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res 2017; 13:81–7.
26. Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 1965; 13:253–9.
27. Gregoriadis G. Drug entrapment in liposomes. FEBS Lett 1973; 36:292–6.
28. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8:102.
29. Sharma A. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997; 154:123–40.
30. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci 2014; 9:176–82.
31. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep 2016; 6:25876.
32. Bangham AD. Properties and uses of lipid vesicles: an overview. Ann N Y Acad Sci 1978; 308:2–7.
33. Deamer DW. Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 1978; 308:250–8.
34. Zumbuehl O, Weder HG. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. BBA 1981; 640:252–62.
35. Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 1978; 75:4194–8.
36. Otake K, Shimomura T, Goto T, Imura T, Furuya T, Yoda S, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006; 22:2543–50.
37. Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method. J Supercrit Fluids 2011; 57:162–74.
38. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed 2015; 10:975.
39. Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9: e1450.
40. Huang SL, MacDonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta –Biomembr 2004; 1665:134–41.
41. Jin Y, Liang X, An Y, Dai Z. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer. Bioconjug Chem 2016; 27:2931–42.
42. Ogihara-Umeda I, Sasaki T, Kojima S, Nishigori H. Optimal radiolabeled liposomes for tumor imaging. J Nucl Med 1996; 37:326–32.
43. Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 2012; 64:1417–35.
44. Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, nearinfrared fluorescent, and nuclear imaging. Bioconjug Chem 2012; 23:1322–32.
45. Muthu MS, Feng S-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 2013; 10:151–5.
46. Samson AAS, Park S, Kim S-Y, Min D-H, Jeon NL, Song JM. Liposomal codelivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res 2018:1–9.
47. Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug codelivery systems in cancer cells. Mater Sci Eng C 2017; 71:1327–41.
48. Shin DH, Tam YT, Kwon GS. Polymeric micelle nanocarriers in cancer research. Front Chem Sci Eng 2016; 10:348–59.
49. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm 2017; 113:211–28.
50. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 2010; 5:485–505.
51. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47:113–31
52. Chen Y, Liu Y, Yao Y, Zhang S, Gu Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org Biomol Chem 2017; 15:3232–8.
53. Tang L-Y, Wang Y-C, Li Y, Du J-Z, Wang J. Shell-detachable micelles based on disulfide-linked block copolymer as potential carrier for intracellular drug delivery. Bioconjug Chem 2009; 20:1095–9.
54. Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, et al. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules 2014; 15:4281–92.
55. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007; 24:1029–46.
56. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65:259–69.
57. Liu J, Xiao Y, Allen C. Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci 2004; 93:132–43.
58. Kohori F, Yokoyama M, Sakai K, Okano T. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems. J Control Release 2002; 78:155–63.
59. Husseini Ga, Runyan CM, Pitt WG. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer 2002; 2:20.
60. Seo S-J, Lee S-Y, Choi S-J, Kim H-W. Tumor-targeting co-delivery of drug and gene from temperature-triggered micelles. Macromol Biosci 2015; 15:1198–204.
61. Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med 2009; 234:123–31.
62. Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. JNCI J Natl Cancer Inst 2007; 99:1095–106.
63. Palmerston Mendes L, Pan J, Torchilin V. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22:1401.
64. Jackson CL, Chanzy HD, Booy FP, Drake BJ, Tomalia DA, Bauer BJ, et al. Visualization of dendrimer molecules by transmission electron microscopy (TEM): staining methods and cryo-TEM of vitrified solutions. Macromolecules 1998; 31:625965.
65. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009.
66. Majoros IJ, Williams CR, Tomalia DA, Baker JR. New dendrimers: synthesis and characterization of POPAM-PAMAM hybrid dendrimers. Macromolecules 2008; 41:8372–9.
67. Caminade A-M. Phosphorus dendrimers for nanomedicine. Chem Commun 2017; 53:98308.
68. Richardt G, Werner N, Fritz V. In: Types of dendrimers and their syntheses. Dendrimer chem. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. p. 81–167.
69. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J 1985; 17:117–32.
70. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990; 112:7638–47.
71. Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2016; 4:375–90.
72. Ramireddy R, Raghupathi KR, Torres DA, Thayumanavan S. Stimuli sensitive amphiphilic dendrimers. New J Chem 2012; 36:340.
73. Jeffreys AJ, Wilson V, Thein SL. Individual-specific ‘‘fingerprints” of human DNA. Nature 15; 316:76–9.
74. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60: a new form of carbon. Nature 1990; 347:354–8.
75. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today 2011; 14:316–23.
76. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354:56–8.
77. Li Z, de Barros ALB, Soares DCF, Moss SN, Alisaraie L. Functionalized singlewalled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm 2017; 524:41–54.
78. Lay CL, Liu J, Liu Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices 2011; 8:561–6.
79. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006; 58:1655–70.
80. Wang JT, Al-Jamal KT. Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine 2015; 10:2639–42.
81. Kafa H, Wang JT-W, Rubio N, Venner K, Anderson G, Pach E, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials 2015; 53:437–52.
82. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed 2016; 11:5163–85.
83. Seifalian A. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 2011; 6:2963.
84. Chen Z, Zhang A, Wang X, Zhu J, Fan Y, Yu H, et al. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J Nanomater 2017; 2017:1–13.